ON STRONG SOLUTIONS OF QUASI-VARIATIONAL INEQUALITIES

Bui An Ton

Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada V6S 1N3

(Submitted by: Viorel Barbu)

Abstract. Let S be an upper semicontinuous set-valued mapping of a Hilbert space H into the closed convex subsets of H and let φ be a lower semicontinuous mapping of $\mathcal{H} \times H$ into R with $\varphi(p, \cdot)$ being a convex function of H into R and $D(\varphi) = \mathcal{H} \times V$ where V is a Hilbert space. The existence of a solution of the quasi-variational inequality $u \in S(u)$ and $(Au - f, v - u) \ge 0$ for all $v \in S(u)$ with $Au \in \partial_u \varphi(p, u)|_{p=Lu}$ is shown. Applications to elliptic boundary-value problems and to an equilibrium noncooperative constrained *n*-person game are given.

0. Let *H* be a real Hilbert space and let *S* be an upper semicontinuous set-valued mapping of *H* into the closed convex subsets of *H* with convex domain D(S). Let φ be a lower semicontinuous mapping of $\mathcal{H} \times H$ into R^+ with $\varphi(p, \cdot)$ being a convex function of *H* into R^+ and $D(\varphi) = \mathcal{H} \times V$ where *V* is a Hilbert space dense in *H*. There exists a bounded linear mapping *L* of *V* into the Hilbert space \mathcal{H} .

It is the purpose of this paper to study the quasi-variational inequality

$$u \in S(u)$$
 and $(Au - f(u), v - u) \ge 0$ (0.1)

for all $v \in S(u)$ with $Au \in \partial_u \varphi(p, u)|_{p=Lu}$ and $f(u) \in \mathcal{F}(u)$. In (0.1), $\mathcal{F}(u)$ is a set-valued upper semicontinuous mapping of V into the closed convex subsets of H.

Quasi-variational inequalities arise in the study of optimal control problems with impulses, in free boundary problems, in mathematical economics, and were introduced by A. Bensoussan and J.L. Lions ([4]).

In Section 2 the existence of a solution u of (0.1) with Au in H is established, thereby extending an earlier result of Joly and Mosco (cf. [1], page 537) where $\varphi(p, u) = \varphi(u)$ and $\partial \varphi$ is a set-valued mapping of V into its dual V^* . In the applications, the strong solution u of (0.1) given in Section 2 allows us to deduce some global regularity properties for u.

Let g, h be two proper lower semicontinuous convex functions from H and from a Hilbert space U respectively into R^+ . Following Barbu, Neittaanmaki and Niemisto ([3]), we consider in Section 3 the optimal control problem

$$\inf \{ g(y) + h(u) : y \in S(y), \ (Ay - f(y) - Bu, x - y) \ge 0, \\ \{x, u\} \in S(y) \times U, \ Ay \in \partial_y \varphi(p, y)|_{p = Ly}, \ f(y) \in \mathcal{F}(y) \}.$$
(0.2)

Received for publication September 1995.

AMS Subject Classifications: 35J85, 49K24, 90D10.