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1. Introduction. Let us start by considering the linear Neumann prob-
lem

Lu = λu + h(x) in Ω, ∂u/∂νL = 0 on ∂Ω. (1.1)

Here Ω is a smooth bounded domain in R
N , L is a second order linear

symmetric elliptic operator in divergence form on Ω and ∂/∂νL denotes the
associated conormal derivation on ∂Ω. Let μ1 be the first eigenvalue of L
under the above boundary conditions.

In this context the antimaximum principle (cf. [2]) asserts that given
h ≥ 0, h �≡ 0, there exists δ = δ(h) > 0 such that if λ ∈]μ1, μ1 + δ[, then
any solution u of (1.1) satisfies u < 0 on Ω̄. Moreover when N = 1, δ can be
taken independent of h. We say in this latter case that the antimaximum
principle holds uniformly and we denote by δ1 the largest δ admissible.

As observed in [4], there exists a connection between the antimaximum
principle and the behaviour at infinity of the corresponding Fučik spectrum.
We recall that this spectrum is defined as the set Θ of those (α, β) ∈ R

2

such that

Lu = αu+ − βu− in Ω, ∂u/∂νL = 0 on ∂Ω (1.2)
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