Differential and Integral Equations

SOME EXTREMAL SINGULAR SOLUTIONS OF A NONLINEAR ELLIPTIC EQUATION

Juan Dávila

Department of Mathematics, Rutgers University, New Brunswick, NJ 08903

(Submitted by: Haim Brezis)

1. Introduction. Let $\Omega \subset \mathbb{R}^n$ be a smooth, bounded domain, and let f be a smooth function on Ω , $f \geq 0$, $f \not\equiv 0$. Let p > 1 and consider the semilinear elliptic equation

$$(P_t) \begin{cases} -\Delta u = u^p + tf & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $t \ge 0$ is a parameter. We are concerned with weak solutions of (P_t) , and we use the definition introduced in [2]: a weak solution of (P_t) is a function $u \in L^1(\Omega)$, $u \ge 0$, such that $u^p \delta \in L^1(\Omega)$, where $\delta(x) = \operatorname{dist}(x, \partial\Omega)$, and such that

$$-\int_{\Omega} u\Delta\zeta \ dx = \int_{\Omega} (u^p + tf)\zeta \ dx$$

for all $\zeta \in C^2(\overline{\Omega})$ with $\zeta = 0$ on $\partial\Omega$. We start by mentioning some well-known facts (see for example [2], [1], [6]).

Theorem 1. There exists $0 < t^* < \infty$ such that for $0 < t < t^*$, (P_t) has a unique minimal solution $\underline{u}(\cdot,t)$ (which is smooth), for $t = t^*$ (P_{t^*}) has a unique solution u^* (possibly unbounded), and for $t > t^*$ there is no solution of (P_t) (even in the weak sense). Moreover, $\underline{u}(\cdot,t)$ depends smoothly on $t \in (0,t^*)$, increases as t increases, and $\underline{u}(\cdot,t) \nearrow u^*$ almost everywhere in Ω , as $t \nearrow t^*$.

We call u^* the extremal solution. An important feature of the minimal solution \underline{u} is that the linearized operator at \underline{u} , $-\Delta - p\underline{u}^{p-1}$ has a positive

Accepted for publication October 1999.