Differential and Integral Equations

ON THE FUČIK SPECTRUM WITH INDEFINITE WEIGHTS

M. ALIF AND J.-P. GOSSEZ Dép. Mathématique, C.P. 214 Université Libre de Bruxelles, 1050 Bruxelles, Belgium

(Submitted by: Klaus Schmitt)

1. INTRODUCTION

This paper is partly concerned with the one-dimensional asymmetric problem with weight

$$\begin{cases} Lu = m(t)(au^{+} - bu^{-}) \text{ in } (T_1, T_2), \\ u(T_1) = u(T_2) = 0. \end{cases}$$
(1.1)

Here Lu := -(p(t)u')' + q(t)u, p, q and $m \in C[T_1, T_2]$, p(t) > 0 on $[T_1, T_2]$, $q(t) \ge 0$ on $[T_1, T_2]$, $m(t) \ne 0$ and $u^{\pm} := \max\{\pm u, 0\}$. The associated Fučik spectrum is defined as the set Σ of those $(a, b) \in \mathbb{R}^2$ such that (1.1) has a nontrivial solution u.

The description of this spectrum Σ is classical and explicit when Lu = -u''and there is no weight; i.e., $m(t) \equiv 1$ (cf. [6], [9]). The same general picture for Σ remains valid when L is as above and m(t) > 0 on (T_1, T_2) (cf. [8], [5], [12]) : Σ is made of the two lines $\mathbb{R} \times \lambda_1^m$ and $\lambda_1^m \times \mathbb{R}$ together with a sequence of hyperbolic-like curves in $\mathbb{R}^+ \times \mathbb{R}^+$ passing through $(\lambda_k^m, \lambda_k^m), k \geq$ 2; one or two such curves emanate from each $(\lambda_k^m, \lambda_k^m)$, and the corresponding solutions of (1.1) along these curves have exactly k - 1 zeros in (T_1, T_2) . Here $(0 <)\lambda_1^m < \lambda_2^m < \cdots \to +\infty$ denotes the sequence of eigenvalues of the associated linear problem

$$\begin{cases} Lu = \lambda m(t)u \text{ in } (T_1, T_2), \\ u(T_1) = u(T_2) = 0. \end{cases}$$
(1.2)

One of our purposes in this paper is to investigate the situation where the weight function m(t) in (1.1) changes sign in (T_1, T_2) . In that case it is well-known that the eigenvalues in (1.2) form a double sequence : $-\infty \leftarrow$

Accepted for publication: September 2000

AMS Subject Classifications: 34B15, 34L05.