Differential and Integral Equations

PARABOLIC PROBLEMS WITH NONLINEAR DYNAMICAL BOUNDARY CONDITIONS AND SINGULAR INITIAL DATA

José M. Arrieta¹

Departamento de Matemática Aplicada, Facultad de Matemáticas Universidad Complutense de Madrid, 28040 Madrid, Spain

PAVOL QUITTNER² Institute of Applied Mathematics, Comenius University Mlynská dolina, 84248 Bratislava, Slovakia

ANÍBAL RODRÍGUEZ-BERNAL¹ Departamento de Matemática Aplicada, Facultad de Matemáticas Universidad Complutense de Madrid, 28040 Madrid, Spain

(Submitted by: Herbert Amann)

1. INTRODUCTION

In this paper we consider the following parabolic problem with dynamic boundary conditions:

$u_t + \mathcal{A}u$	=	$f(x, t, u, \nabla u),$	$x \in \Omega, t > 0,$	
$(\gamma u)_t + \mathcal{B}u$	=	$g(x,t,\gamma u),$	$x\in\Gamma, t>0,$	((1 1)
u(x,0)	=	$u_0(x),$	$x \in \Omega,$	$\int (1.1)$
$(\gamma u)(x,0)$	=	$v_0(x),$	$x \in \Gamma,$	J

where Ω is a bounded domain in \mathbb{R}^n of class C^2 , $\Gamma = \partial \Omega$, ν denotes the outer normal on Γ , γ is the trace operator, and $\mathcal{A}u = -\Delta u + \omega u$, $\mathcal{B}u = u_{\nu} + \omega u$. Although we will consider this particular case, the techniques we use can also be applied to the case of systems in which, as in [10], $\mathcal{A}u = -\partial_j(a_{jk}\partial_k u) + a_j\partial_j u + a_0$, $\mathcal{B}u = a_{jk}\nu^j\gamma\partial_k u + b_0\gamma u$, with smooth-enough coefficients. On the nonlinear terms, f and g, we assume that they are smooth functions with

¹Partially supported by DGES PB96-0648.

²Partially supported by Swiss National Science Foundation and VEGA Grant 1/7677/20.

Accepted for publication: September 2000

AMS Subject Classifications: 35K60.