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TAILORED FINITE POINT METHOD FOR STEADY-STATE

REACTION-DIFFUSION EQUATIONS∗

HOUDE HAN† AND ZHONGYI HUANG‡

Abstract. In this paper, we propose to use the tailored-finite-point method (TFPM) for a type
of steady-state reaction-diffusion problems in two dimensions. Three tailored finite point schemes
are constructed for the given problem. Our finite point method has been tailored to some particular
properties of the problem. Therefore, our TFPM satisfies the discrete maximum principle automat-
ically. We also study the error estimates of our TFPM. We prove that our TFPM can achieve good
accuracy even when the mesh size h≫ ε. Our numerical examples show the efficiency and reliability
of our method.
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1. Introduction

We consider the steady-state reaction-diffusion equation in the unit square Ω=
(0,1)×(0,1):

Lu≡−ε2△u+b(x,y)u=f(x,y), in Ω, (1.1)

u=0, on Γ=∂Ω, (1.2)

where b(x,y) and f(x,y) are two given functions on Ω̄ and

b(x,y)≥ bmin>0, on Ω̄.

Furthermore we suppose that the given functions b(x,y),f(x,y)∈C4,β(Ω̄) for a real
number β∈ (0,1), and the function f(x,y) satisfies the corner compatibility conditions:

f(0,0)=f(1,0)=f(0,1)=f(1,1)=0. (1.3)

Then we know that the solution of problem (1.1)–(1.2), u(x,y)∈C6,β(Ω)∩C3,β(Ω̄)
[5].

The problem (1.1)–(1.2) is a singular perturbation problem when ε≪1; the so-
lution of problem (1.1)–(1.2) is allowed boundary layers as well as corner layers [10].
These layers are characterized by rapid transitions in the solution, and are thus dif-
ficult to capture in a numerical approximation without using a large number of un-
knowns. Also, such layers tend to cause spurious oscillations in a numerical solution
to the problem.

Methods for the numerical solution of problems such as (1.1)–(1.2) in bounded or
unbounded domains that attempt to deal with these difficulties have been developed
by many mathematicians, see e.g., [2, 3, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25].
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