STABILITY AND TOTAL VARIATION ESTIMATES ON GENERAL SCALAR BALANCE LAWS*

RINALDO M. COLOMBO ${ }^{\dagger}$, MAGALI MERCIER ${ }^{\ddagger}$, AND MASSIMILIANO D. ROSINI ${ }^{\S}$

Abstract

Consider the general scalar balance law $\partial_{t} u+\operatorname{Div} f(t, x, u)=F(t, x, u)$ in several space dimensions. The aim of this paper is to estimate the dependence of its solutions on the flow f and on the source F. To this aim, a bound on the total variation in the space variables of the solution is obtained. This result is then applied to obtain well posedness and stability estimates for a balance law with a non local source.

Key words. Multi-dimensional scalar conservation laws, Kružkov entropy solutions.
AMS subject classifications. 35L65.

1. Introduction

The Cauchy problem for a scalar balance law in N space dimensions

$$
\left\{\begin{array}{lr}
\partial_{t} u+\operatorname{Div} f(t, x, u)=F(t, x, u) & (t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{N} \tag{1.1}\\
u(0, x)=u_{o}(x) & x \in \mathbb{R}^{N}
\end{array}\right.
$$

is well known to admit a unique weak entropy solution, as proved in the classical result by Kružkov [12, Thm. 5]. The same paper also provides the basic stability estimate on the dependence of solutions from the initial data, see [12, Thm. 1]. In the same setting established in [12], we provide here an estimate on the dependence of the solutions to (1.1) on the flow f and the source F, and recover the known estimate on the dependence from the initial datum u_{o}. A key intermediate result is a bound on the total variation of the solution to (1.1), which we provide in Theorem 2.5.

In the case of a conservation law, i.e., where $F=0$, and where the flow f is independent of t and x, the dependence of the solution on f was already considered in [3], where other results were also presented. In this case, the TV bound is obvious, since TV $(u(t)) \leq \operatorname{TV}\left(u_{o}\right)$. The estimate provided by Theorem 2.5 slightly improves the analogous result in [3, Thm. 3.1] (that was already known, see $[6,16]$), which reads (for a suitable absolute constant C)

$$
\|u(t)-v(t)\|_{\mathbf{L}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}\right)} \leq\left\|u_{o}-v_{o}\right\|_{\mathbf{L}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}\right)}+C \operatorname{TV}\left(u_{o}\right) \mathbf{L i p}(f-g) t
$$

Our result, given by Theorem 2.6, reduces to this inequality when f and g are not dependent on t and x and $F=G=0$, but with $C=1$.

A flow also dependent on x was considered in [4, 9], though in the special case $f(x, u)=l(x) g(u)$, but with a source term containing a possibly degenerate parabolic

[^0]
[^0]: *Received: July 20, 2008; accepted (in revised version): November 13, 2008. Communicated by Alberto Bressan.
 ${ }^{\dagger}$ Department of Mathematics, Brescia University, Via Branze 38, 25133 Brescia, Italy (rinaldo@ing.unibs.it).
 \ddagger Department of Mathematics, Brescia University, Via Branze 38, 25133 Brescia, Italy. Permanent address: Université de Lyon, Université Lyon 1, École centrale de Lyon, INSA de Lyon, CNRS, UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France (mercier@math.univ-lyon1.fr).
 §Department of Mathematics, Brescia University, Via Branze 38, 25133 Brescia, Italy. Permanent address: Institute of Mathematics of the Polish Academy of Sciences, ul. Sniadeckich 8, 00956 Warszawa, Poland (massimilianorosini@gmail.com).
 The third author acknowledges the support from INdAM.

