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STABILITY AND TOTAL VARIATION ESTIMATES
ON GENERAL SCALAR BALANCE LAWS∗

RINALDO M. COLOMBO† , MAGALI MERCIER‡ , AND MASSIMILIANO D. ROSINI§

Abstract. Consider the general scalar balance law ∂tu+Divf(t,x,u)=F (t,x,u) in several space
dimensions. The aim of this paper is to estimate the dependence of its solutions on the flow f and
on the source F . To this aim, a bound on the total variation in the space variables of the solution is
obtained. This result is then applied to obtain well posedness and stability estimates for a balance
law with a non local source.
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1. Introduction
The Cauchy problem for a scalar balance law in N space dimensions

{

∂tu+Divf(t,x,u)=F (t,x,u) (t,x) ∈ R+×R
N

u(0,x)=uo(x) x ∈ R
N (1.1)

is well known to admit a unique weak entropy solution, as proved in the classical
result by Kružkov [12, Thm. 5]. The same paper also provides the basic stability
estimate on the dependence of solutions from the initial data, see [12, Thm. 1]. In the
same setting established in [12], we provide here an estimate on the dependence of
the solutions to (1.1) on the flow f and the source F , and recover the known estimate
on the dependence from the initial datum uo. A key intermediate result is a bound
on the total variation of the solution to (1.1), which we provide in Theorem 2.5.

In the case of a conservation law, i.e., where F =0, and where the flow f is
independent of t and x, the dependence of the solution on f was already considered
in [3], where other results were also presented. In this case, the TV bound is obvious,
since TV

(

u(t)
)

≤TV(uo). The estimate provided by Theorem 2.5 slightly improves
the analogous result in [3, Thm. 3.1] (that was already known, see [6, 16]), which
reads (for a suitable absolute constant C)

∥

∥u(t)−v(t)
∥

∥

L1(RN ;R)
≤‖uo−vo‖L1(RN ;R) +CTV(uo)Lip(f −g)t.

Our result, given by Theorem 2.6, reduces to this inequality when f and g are not
dependent on t and x and F =G=0, but with C =1.

A flow also dependent on x was considered in [4, 9], though in the special case
f(x,u)= l(x)g(u), but with a source term containing a possibly degenerate parabolic
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