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A BEALE-KATO-MAJDA BREAKDOWN CRITERION FOR AN

OLDROYD-B FLUID IN THE CREEPING FLOW REGIME∗

RAZ KUPFERMAN† , CLAUDE MANGOUBI‡ , AND EDRISS S. TITI§

Abstract. We derive a criterion for the breakdown of solutions to the Oldroyd-B model in R
3

in the limit of zero Reynolds number (creeping flow). If the initial stress field is in the Sobolev space
Hm(R3), m>5/2, then either a unique solution exists within this space indefinitely, or, at the time
where the solution breaks down, the time integral of the L∞-norm of the stress tensor must diverge.
This result is analogous to the celebrated Beale-Kato-Majda breakdown criterion for the inviscid
Euler equations of incompressible fluids.
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1. Introduction

The Oldroyd-B model is a classical model for dilute solutions of polymers sus-
pended in a viscous incompressible solvent [1]. Although it suffers, as a physical model
derived from microscopic dynamics, from numerous shortcomings (e.g., polymers are
allowed to stretch indefinitely), it is often considered as a prototypical model for vis-
coelastic fluids, and has therefore been the focus of both analytical and numerical
studies.

At present, there is no global-in-time existence theory for the Oldroyd-B model.
The notable difference between the Oldroyd-B model and its Newtonian counterpart,
the incompressible Navier-Stokes equations, is that in the viscoelastic case, global-in-
time existence has not even been established in two dimensions nor in the creeping
flow regime, i.e., when the momentum equation is a Stokes system. The reason for
this difference can be understood by observing structural similarities between the
inertialess Oldroyd-B model and the Euler equations (in three dimensions), or the 2D
quasi-geostrophic flow equations (in two dimensions) [2].

Since the early 1970s, numerical simulations of the Oldroyd-B model (as well as
other viscoelastic models) have been infested by stability and accuracy problems that
arise at frustratingly low values of the elasticity parameter (the Weissenberg number)
[3, 4]. While some of these difficulties have been elucidated [5], it is to a large extent
still a mystery why computations break down in the low-Reynolds-high-Weissenberg
regime. As is often the case in such situations, numerical data are by themselves
not sufficient to explain the reasons for this breakdown. In the absence of a well-
posedness theory, it is not even clear in what spaces solutions have to be sought.
Thus, the development of such a theory is of major importance for both theoretical
and practical purposes.

This situation is analogous to that of incompressible Newtonian fluids at high
Reynolds number, where global-in-time existence has not yet been established. For a
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