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GLOBAL EXISTENCE OF WEAK SOLUTIONS TO THE

REGULARIZED HOOKEAN DUMBBELL MODEL ∗

LINGYUN ZHANG† , HUI ZHANG‡ , AND PINGWEN ZHANG§

Abstract. We consider a regularized Hookean dumbbell model in dilute polymeric solutions.
Compared with the classical model, this model here is more natural, in which appear a macro diffusive
term ε△xψ and Friedrichs mollifiers with a parameter α. Based on a compactness argument, the
global existence of weak solutions to this model is established in the framework of the Rothe method.
By a rigorous limiting process ε→0+, we also obtain the global existence of weak solutions to the
reduced model with ε=0.
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1. Introduction

In this paper, we investigate the global existence of weak solutions to a regular-
ized Hookean dumbbell model for dilute polymeric fluids. In dilute polymer solutions,
the polymer coils rarely overlap, so the interactions among polymer chains can be ne-
glected. The polymer chains can be modelled by dumbbells, each with two beads
connected by a single spring. The configuration of the spring then specifies the con-
formation of the polymer.

Denoting by u the velocity and by p the pressure, the governing equations for the
incompressible polymeric fluids are

∂u

∂t
+(u ·∇x)u−ν∆xu+∇xp=∇x ·τ in Ω×(0,T ], (1.1)

∇x ·u=0 in Ω×(0,T ]. (1.2)

Here Ω is a bounded open set in R
d,d=2 or 3, ν >0 is the viscosity of the solvent,

and τ is an extra stress tensor, which takes the form

τ =kω(C(ψ)−ρ(ψ)I) in Ω×(0,T ], (1.3)

C(ψ)=

∫

D

(∇qU ⊗q)ψ(x,q,t)dq in Ω×(0,T ], (1.4)

ρ(ψ)=

∫

D

ψ(x,q,t)dq in Ω×(0,T ]. (1.5)

Here κ,ω >0 denote the Boltzmann constant and the absolute temperature, respec-
tively. I is the unit d×d tensor, U is the spring potential. This stress tensor τ
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