# Gravity Coupled with Matter and the Foundation of Non-commutative Geometry 

Alain Connes<br>I.H.E.S, 35 route de Chartres, 91440 Bures-sur-Yvette, France

Received: 26 March 1996/Accepted: 17 April 1996


#### Abstract

We first exhibit in the commutative case the simple algebraic relations between the algebra of functions on a manifold and its infinitesimal length element $d s$. Its unitary representations correspond to Riemannian metrics and Spin structure while $d s$ is the Dirac propagator $d s=\star \times=D^{-1}$, where $D$ is the Dirac operator. We extend these simple relations to the non-commutative case using Tomita's involution $J$. We then write a spectral action, the trace of a function of the length element, which when applied to the non-commutative geometry of the Standard Model will be shown ([CC]) to give the SM Lagrangian coupled to gravity. The internal fluctuations of the non-commutative geometry are trivial in the commutative case but yield the full bosonic sector of SM with all correct quantum numbers in this slightly non-commutative case. The group of local gauge transformations appears spontaneously as a normal subgroup of the diffeomorphism group.


Riemann's concept of a geometric space is based on the notion of a manifold $M$ whose points $x \in M$ are locally labelled by a finite number of real coordinates $x^{\mu} \in \mathbb{R}$. The metric data is given by the infinitesimal length element,

$$
\begin{equation*}
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu} \tag{1}
\end{equation*}
$$

which allows to measure distances between two points $x, y$ as the infimum of the length of $\operatorname{arcs} x(t)$ from $x$ to $y$,

$$
\begin{equation*}
d(x, y)=\operatorname{Inf} \int_{x}^{y} d s \tag{2}
\end{equation*}
$$

In this paper we shall build our notion of geometry, in a very similar but somehow dual manner, on the pair $(\mathscr{A}, d s)$ of the algebra $\mathscr{A}$ of coordinates and the infinitesimal length element $d s$. To start we only consider $d s$ as a symbol, which together with $\mathscr{A}$ generates an algebra $(\mathscr{A}, d s)$. The length element $d s$ does not commute with the coordinates, i.e. with the functions $f$ on our space, $f \in \mathscr{A}$. But it does satisfy non-trivial relations. Thus in the simplest case where $\mathscr{A}$ is commutative we shall have,

$$
\begin{equation*}
\left[\left[f, d s^{-1}\right], g\right]=0 \quad \forall f, g \in \mathscr{A} \tag{3}
\end{equation*}
$$

