

Morse Homotopy and Chern–Simons Perturbation Theory

Kenji Fukaya¹

Department of Mathematics, Faculty of Sciences, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan E-mail: fukaya@kusm kyoto-u ac.jp

Received: 1 June 1995/Accepted: 2 February 1996

Abstract: We define an invariant of a three manifold equipped with a flat bundle with vanishing homology. The construction is based on Morse theory using several Morse functions simultaneously and is regarded as a higher loop analogue of various product operations in algebraic topology. There is a heuristic argument that this invariant is related to perturbative Chern–Simons Gauge theory by Axelrod–Singer, etc. There is also a theorem which gives a relation of the construction to open string theory on the cotangent bundle.

Contents

0.	Introduction	37
1.	Statement of the result	40
2.	Transversality and compactness	48
3.	Independence of combinatorial propagator	52
4.	Independence of the Morse functions I	59
5.	Independence of the Morse functions II	62
6.	Compactification of configuration space and transversality at diagonal	73
7.	Orientation	82
8.	Concluding remarks	85

0. Introduction

Let *M* be a 2*n* dimensional manifold and *N* be its *n* dimensional submanifold. We consider a current T_N such that $T_N(\omega) = \int_N \omega$. We try to justify the integral

$$\int_{M} T_N \wedge T_N \,. \tag{0.1}$$

(We remark that $T_N \wedge T_N$ itself is not well defined.) One way to do so is to take a perturbation N' of N so that N' and N are transversal to each other and consider

¹Partially supported by Grants-in-Aid for Scientific Research on Priority Areas 231 "Infinite Analysis"