

A Central Limit Theorem for the Fourth Wick Power of the Free Lattice Field

S. Albeverio^{1,2}, X.Y. Zhou^{1,3,4}

¹ Institute of Mathematics, Ruhr-University Bochum, D-44780 Bochum, Germany. E-mail: sergio albeverio@rz ruhr-uni-bochum de

² BiBoS; SFB 237 Bochum-Essen-Düsseldorf; CERFIM, Locarno

³ Department of Mathematics, University of Bielefeld, D-33501 Bielefeld, Germany

⁴ Department of Mathematics, Beijing Normal University, Beijing 100875, China

Received: 1 October 1995/Accepted: 23 January 1996

Abstract: Let G_a be the free lattice field measure of mass m_0 on aZ^d , and : ϕ_x^4 : be the corresponding fourth Wick power of the lattice field ϕ_x . Let $g \in C_0(\mathbb{R}^d)$, $g \ge 0$, be a given function and $a' = a'(a) \ge a$ satisfy: $\lim_{a\to 0^+} a' = 0$ and $a'Z^d \subset aZ^d$. We prove that if $d \ge 3$, or d = 2 and $\lim_{a\to 0^+} a' |\log a|^2 = \infty$, then $\{a'^d \sum_{x \in a'Z^d} g_x : \phi_x^4 :\}$ satisfies the central limit theorem: there is V(a, a') with $\lim_{a\to 0^+} V(a, a') = \infty$ such that the distribution of $V(a, a')^{-1}a'^d \sum_{x \in a'Z^d} g_x : \phi_x^4 :$ under G_a is convergent to the standard normal distribution, as $a \to 0^+$.

1. Introduction

Let G_a be the free lattice field measure of mass $m_0 > 0$ and lattice spacing a > 0on $aZ^d = \{ax : x \in Z^d\}$, and let $\langle \cdot \rangle_{G_a}$ denote the expectation with respect to G_a . Let

$$C^{(a)}(x-y) = \langle \phi_x \phi_y \rangle_{G_a}.$$

 G_a is thus the (lattice) Gaussian measure with covariance $C^{(a)}$. It is easy to show that (see [Si, BFS])

$$C^{(a)}(x-y) = (2\pi)^{-d} \int_{[-\frac{\pi}{a},\frac{\pi}{a}]^d} \left[m_0^2 + 2a^{-2} \sum_{j=1}^d (1-\cos ak_j) \right]^{-1} e^{ik \cdot (x-y)} dk$$

with $k = (k_1, \ldots, k_d)$. Let : ϕ_x^4 : be the fourth Wick order of ϕ_x , i.e.

$$:\phi_x^4:=\phi_x^4-6\phi_x^2\langle\phi_x^2\rangle_{G_a}+3\langle\phi_x^2\rangle_{G_a}^2$$

Let $g(\geq 0) \in C_0(\mathbb{R}^d)$ be a given function and a' = a'(a) satisfy: $a'Z^d \subset aZ^d$ and $\lim_{a\to 0^+} a' = 0$. From this we can see that $a' \geq a$. For simplicity we also assume that $\lim_{a\to 0^+} \frac{a}{a'}$ exists. The main aim of this paper is to discuss conditions on a and a' such that the central limit theorem holds for the system $\{\xi(a, a')\}$, where

$$\xi(a,a') = a'^d \sum_{x \in a'Z^d} g_x : \phi_x^4 : \; .$$