Dynamic Stability of Vortex Solutions of Ginzburg-Landau and Nonlinear Schrödinger Equations

M.I. Weinstein ${ }^{1}$, J. Xin ${ }^{2}$
${ }^{1}$ Department of Mathematics, Unıversity of Michigan, Ann Arbor, MI 48109, USA
${ }^{2}$ Department of Mathematics, University of Aıizona, Tucson, AZ 85721, USA

Received: 1 Novembeı 1995/Accepted: 15 Febıualy 1996

Abstract

The dynamic stability of vortex solutions to the Ginzburg-Landau and nonlinear Schrödinger equations is the basic assumption of the asymptotic particle plus field description of interacting vortices. For the Ginzburg-Landau dynamics we prove that all vortices are asymptotically nonlinearly stable relative to small radial perturbations Initially finite energy perturbations of vortices decay to zero in $L^{p}\left(\mathbb{R}^{2}\right)$ spaces with an algebraic rate as time tends to infinity We also prove that under general (nonradial) perturbations, the plus and minus one-vortices are linearly dynamically stable in L^{2}, the linearized operator has spectrum equal to $(-\infty, 0]$ and generates a C_{0} semigroup of contractions on $L^{2}\left(\mathbb{R}^{2}\right)$ The nature of the zero energy point is clarified, it is resonance, a property related to the infinite energy of planar vortices Our results on the linearized operator are also used to show that the plus and minus one-vortices for the Schrödinger (Hamiltonian) dynamics are spectrally stable, ie the linearized operator about these vortices has $\left(L^{2}\right)$ spectrum equal to the imaginary axis The key ingredients of our analysis are the Nash-Aronson estimates for obtaining Gaussian upper bounds for fundamental solutions of parabolic operators, and a combination of variational and maximum principles

1. Introduction

In this paper, we study the dynamic stability of vortex solutions of the GinzburgLandau and nonlinear Schrödinger equations

$$
\begin{align*}
& u_{t}=\Delta u+\left(1-|u|^{2}\right) u \tag{array}\\
&=\frac{\delta \mathscr{E}}{\delta \bar{u}} \tag{12}\\
&-i u_{t}=\Delta u+\left(1-|u|^{2}\right) u
\end{align*}=\frac{\delta \mathscr{\delta}}{\delta \bar{u}},
$$

Here, $u=u(t, x)$ is a complex valued function defined for each $t>0$ and $x=$ $\left(x_{1}, r_{2}\right) \in \mathbb{R}^{2} \quad \Delta=\hat{r}_{1}^{2}+\hat{c}_{1}^{2}$, denotes the two-dimensional Laplacian The energy

