A Matrix Integral Solution to [P, Q] = Pand Matrix Laplace Transforms

M. Adler^{1,*}, A. Morozov^{2,**}, T. Shiota^{3,***}, P. van Moerbeke^{1,4,†}

¹ Department of Mathematics, Brandeis University, Waltham, Mass 02254, USA

E-mail: adler@math.brandeis edu, vanmoerbeke@math brandeis edu

² ITEP, Moscow, Russia E-mail: morozov@vitep5.itep ru

³ Department of Mathematics, Kyoto University, Kyoto 606–01, Japan

E-mail: shiota@kusm kyoto-u ac.jp

⁴ Department of Mathematics, Universite de Louvain, 1348 Louvain-la-Neuve, Belgium

E-mail: vanmoerbeke@geom ucl.ac.be

Received: 5 December 1994 / Accepted: 10 February 1996

Abstract: In this paper we solve the following problems: (i) find two differential operators P and Q satisfying [P, Q] = P, where P flows according to the KP hierarchy $\partial P/\partial t_n = [(P^{n/p})_+, P]$, with $p := \operatorname{ord} P \ge 2$; (ii) find a matrix integral representation for the associated τ -function. First we construct an infinite dimensional space $\mathscr{W} = \operatorname{span}_{\mathbb{C}} \{\psi_0(z), \psi_1(z), \ldots\}$ of functions of $z \in \mathbb{C}$ invariant under the action of two operators, multiplication by z^p and $A_c := z \partial/\partial z - z + c$. This requirement is satisfied, for arbitrary p, if ψ_0 is a certain function generalizing the classical Hänkel function (for p = 2); our representation of the generalized Hänkel function as a double Laplace transform of a simple function, which was unknown even for the p = 2 case, enables us to represent the τ -function associated with the KP time evolution of the space \mathscr{W} as a "double matrix Laplace transform" in two different ways. One representation involves an integration over the space of matrices whose spectrum belongs to a wedge-shaped contour $\gamma := \gamma^+ + \gamma^- \subset \mathbb{C}$ defined by $\gamma^{\pm} = \mathbb{R}_+ e^{\pm \pi i/p}$. The new integrals above relate to matrix Laplace transforms, in contrast with matrix Fourier transforms, which generalize the Kontsevich integrals and solve the operator equation [P, Q] = 1.

Table of Contents

	Intro	duction	
	1	The KP Hierarchy	
		1.1	KP hierarchy
		1.2	Symmetries
2 Grassmannian		nannian	
		2.1	Stabilizers
		2.2	Symmetric functions and matrix integrals

^{*} The support of a National Science Foundation grant #DMS-95-4-51179 is gratefully acknowledged

** The hospitality of the Volterra Center at Brandeis University is gratefully acknowledged

^{***} The hospitality of the University of Louvain and Brandeis University is gratefully acknowledged.

[†] The support of a National Science Foundation grant #DMS-95-4-51179, a Nato, an FNRS and a Francqui Foundation grant is gratefully acknowledged *Correspondence to*: P van Moerbeke