A Matrix Integral Solution to $[P, Q]=P$ and Matrix Laplace Transforms

M. Adler ${ }^{1, \star}$, A. Morozov ${ }^{2, \star \star}$, T. Shiota ${ }^{3, \star \star \star}$, P. van Moerbeke ${ }^{1,4, \dagger}$
${ }^{1}$ Department of Mathematics, Brandeis University, Waltham, Mass 02254, USA
E-mail: adler@math.brandeis edu, vanmoerbeke@math brandeis edu
${ }^{2}$ ITEP, Moscow, Russia E-mail: morozov@ vitep5.itep ru
${ }^{3}$ Department of Mathematics, Kyoto University, Kyoto 606-01, Japan
E-mail: shiota@kusm kyoto-u ac.jp
${ }^{4}$ Department of Mathematics, Universite de Louvain, 1348 Louvain-la-Neuve, Belgium
E-mail: vanmoerbeke@geom ucl.ac.be

Received: 5 December 1994 / Accepted: 10 February 1996

Abstract

In this paper we solve the following problems: (i) find two differential operators P and Q satisfying $[P, Q]=P$, where P flows according to the KP hierarchy $\partial P / \partial t_{n}=\left[\left(P^{n / p}\right)_{+}, P\right]$, with $p:=\operatorname{ord} P \geq 2$; (ii) find a matrix integral representation for the associated τ-function. First we construct an infinite dimensional space $\mathscr{W}=$ $\operatorname{span}_{\mathbb{C}}\left\{\psi_{0}(z), \psi_{1}(z), \ldots\right\}$ of functions of $z \in \mathbb{C}$ invariant under the action of two operators, multiplication by z^{p} and $A_{c}:=z \partial / \partial z-z+c$. This requirement is satisfied, for arbitrary p, if ψ_{0} is a certain function generalizing the classical Hänkel function (for $p=2$); our representation of the generalized Hänkel function as a double Laplace transform of a simple function, which was unknown even for the $p=2$ case, enables us to represent the τ-function associated with the KP time evolution of the space \mathscr{W} as a "double matrix Laplace transform" in two different ways. One representation involves an integration over the space of matrices whose spectrum belongs to a wedge-shaped contour $\gamma:=\gamma^{+}+\gamma^{-} \subset \mathbb{C}$ defined by $\gamma^{ \pm}=\mathbb{R}_{+} \mathrm{e}^{ \pm \pi \mathrm{i} / p}$. The new integrals above relate to matrix Laplace transforms, in contrast with matrix Fourier transforms, which generalize the Kontsevich integrals and solve the operator equation $[P, Q]=1$.

Table of Contents Introduction . 234 1 The KP Hierarchy . 238 1.1 KP hierarchy . 238 1.2 Symmetries . 240 2.1 Stabilizers . 242 2.2 Symmetric functions and matrix integrals 246

[^0]
[^0]: * The support of a National Science Foundation grant \#DMS-95-4-51179 is gratefully acknowledged
 ** The hospitality of the Volterra Center at Brandeis University is gratefully acknowledged
 *** The hospitality of the University of Louvain and Brandeis University is gratefully acknowledged.
 \dagger The support of a National Science Foundation grant \#DMS-95-4-51179, a Nato, an FNRS and a Francqui Foundation grant is gratefully acknowledged
 Correspondence to: P van Moerbeke

