

Factorisations for Partition Functions of Random Hermitian Matrix Models

D.M. Jackson¹, M.J. Perry², T.I. Visentin³

¹Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada. E-mail: dmjackson@dragon.uwaterloo.ca

² Department of Applied Mathematics and Theoretical Physics, Cambridge University, Silver Street, Cambridge CB3 9EW, England

³ Department of Mathematics, University of Winnipeg, Winnipeg, Manitoba, Canada

Received: 8 April 1994/Accepted: 23 October 1995

Abstract: The partition function Z_N , for Hermitian-complex matrix models can be expressed as an explicit integral over \mathbb{R}^N , where N is a positive integer. Such an integral also occurs in connexion with random surfaces and models of two dimensional quantum gravity. We show that Z_N can be expressed as the product of two partition functions, evaluated at translated arguments, for another model, giving an explicit connexion between the two models. We also give an alternative computation of the partition function for the ϕ^4 -model. The approach is an algebraic one and holds for the functions regarded as formal power series in the appropriate ring.

Contents

1.	Intro	duction	26
	1.1.	Background	26
		1.1.1. Principal Results	27
		1.1.2. Organisation of the Paper	27
	1.2.	Matrix Models, the ϕ^4 -Model and the Penner Model	28
	1.3.	The Main Integral $R(\mathbf{x}, N, z)$	29
	1.4.	Combinatorial Terminology	30
		1.4.1. Graphs	30
		1.4.2. Embeddings	30
		1.4.3. The Genus Series	30
	1.5.	The Approach	30
	1.6.	The Main Theorems	31
		1.6.1. Factorisation of the Partition Function for Matrix Models	31
		1.6.2. Combinatorial Maps	31
		1.6.3. Maps and Vertex 4-Regular Maps	32
		1.6.4. A Relationship between the ϕ^4 - and Penner-Models	32
		1.6.5. A Reformulation for the ϕ^4 -Model	33
		1.6.6. A Factorisation for Hypermaps	33
2.	Facto	prisation of the Integral	34
	2.1.	The Character Formulation of the Integral	34