Blow-up Results of Viriel Type for Zakharov Equations

Frank Merle

Université de Cergy-Pontoise, Centre de Mathématiques, Avenue du Parc, 8, Le Campus, F-95033 Cergy-Pontoise Cedex, France

Received: 30 October 1994

Abstract: We consider the Zakharov equations in \mathbb{R}^N (for N = 2, N = 3). We first establish a viriel identity for such equations and then prove a blow-up result for solutions with a negative energy.

In this paper, we consider Zakharov equations in \mathbb{R}^N (for N = 2, 3):

$$iu_t = -\Delta u + nu$$

$$(I'_{c_0}) \qquad \qquad \frac{1}{c_0^2} n_{tt} = \Delta n + \Delta |u|^2 ,$$

$$u(0) = \phi_0, \ n(0) = n_0, \ n_t(0) = n_1$$

where $c_0 > 0$, Λ is the Laplacian operator on \mathbb{R}^N , $u : [0, T) \times \mathbb{R}^N \to \mathbb{C}$, $n : [0, T) \times \mathbb{R}^N \to \mathbb{R}$ and ϕ_0, n_0, n_1 are initial data.

In fact, we consider equation (I'_{c_0}) in the Hamiltonian case. That is, we assume that there is a $w_0 : \mathbb{R}^N \to \mathbb{R}$ such that

$$n_t(0) = n_1 = -\Delta w_0 . \tag{1.1}$$

Communications in Mathematical Physics © Springer-Verlag 1996

Then $\forall t$, there is a w(t) such that

$$n_t(t) = -\Delta w(t) = -\nabla \cdot v(t)$$
,

where $v(t) = \nabla w(t)$. In this case, (I'_{c_0}) can be written in the form

$$iu_{t} = -\Delta u + nu ,$$

$$n_{t} = -\nabla \cdot v ,$$

$$(I_{c_{0}}) \qquad \qquad \frac{1}{c_{0}^{2}}v_{t} = -\nabla n - \nabla |u|^{2} ,$$

$$u(0) = \phi_{0}, \qquad n(0) = n_{0}, \qquad v(0) = v_{0} .$$