Commun. Math. Phys. 175, 401-432 (1996)

## The Strong Decay to Equilibrium for the Stochastic Dynamics of Unbounded Spin Systems on a Lattice

Communications in Mathematical Physics © Springer-Verlag 1996

## Boguslaw Zegarlinski

Mathematics Department, Imperial College, London SW7 2BZ, UK

Received: 28 October 1994/in revised form: 28 February 1995

**Abstract:** Using a method based on the application of hypercontractivity we prove the strong exponential decay to equilibrium for a stochastic dynamics of unbounded spin system on a lattice.

## **0. Introduction**

In recent years essential progress has been made in understanding the ergodicity properties of the Markov semigroups  $P_t$ ,  $t \in \mathbb{R}^+$  defined on the space of continuous functions  $\mathscr{C}(\Omega)$ , with a configuration space  $\Omega \equiv M^{\Gamma}$ , M being a compact metric space and  $\Gamma$  a countable (infinite) set. An important method for the study of these properties was first introduced in [HS]. It involves three elements:

(i) a strong approximation property of the semigroup  $P_t$ ,  $t \in \mathbb{R}^+$  by the semigroups  $P_t^{A,\omega}$  acting (essentially) on  $\mathscr{C}(M^A)$ ,  $\Lambda \subset \Gamma$  finite sets, and fixing a configuration  $\omega \in \Omega$  outside  $\Lambda$ ,

(ii) the finite volume ultracontractivity property of  $P_t^{\Lambda,\omega}$ , and

(iii) the uniform in volume  $\Lambda$  and boundary conditions  $\omega$  hypercontractivity property of the semigroups  $P_t^{\Lambda,\omega}$  on the spaces  $L_p(E_{\Lambda}^{\omega})$ ,  $p \in (1,\infty)$ , with  $E_{\Lambda}^{\omega}$  being the corresponding invariant probability measures.

The first two properties have been well known for a long time for the situation of compact configuration space. Although the hypercontractivity property of a semigroup, or its equivalent property of corresponding invariant measure called the logarithmic Sobolev inequality (LS), was introduced almost twenty years ago, [G], for many years no nontrivial example involving an infinite dimensional configuration space was known. (For the trivial one corresponding to the Gaussian or some product measures see [G].) This was until a very nice Bakry–Emery criterion (B-E) for the logarithmic Sobolev inequality has been introduced in [BE], for a case of configuration space defined with a (finite dimensional) smooth, connected and compact Riemannian manifold M with positive Ricci curvature (or a case when the Ricci curvature is zero, but involving some special log-concave