A Contribution of the Trivial Connection to the Jones Polynomial and Witten's Invariant of 3d Manifolds, I

L. Rozansky ${ }^{1}$
Physics Department, University of Miami, P. O. Box 248046, Coral Gables, FL 33124, U.S.A.

Received: 15 October 1994/in revised form: 21 December 1994

Abstract

We use a path integral formulation of the Chern-Simons quantum field theory in order to give a simple "semi-rigorous" proof of a recently conjectured limitation on the $1 / K$ expansion of the Jones polynomial of a knot and its relation to the Alexander polynomial. A combination of this limitation with the finite version of the Poisson resummation allows us to derive a surgery formula for the contribution of the trivial connection to Witten's invariant of rational homology spheres. The 2-loop part of this formula coincides with Walker's surgery formula for the Casson-Walker invariant. This proves a conjecture that the Casson-Walker invariant is proportional to the 2-loop correction to the trivial connection contribution. A contribution of the trivial connection to Witten's invariant of a manifold with nontrivial rational homology is calculated for the case of Seifert manifolds.

1. Introduction

In his paper [1], Witten defined a topological invariant of a 3d manifold M with an n-component link \mathscr{L} inside it as a partition funciton of a quantum Chern-Simons theory. Let us attach representations $V_{\alpha_{1}}, 1 \leqq i \leqq n$ of a simple Lie group G to the components of \mathscr{L} (in our notations α_{l} are the highest weights shifted by $\rho=$ $\frac{1}{2} \sum_{\lambda_{,} \in \Delta_{+}} \lambda_{l}, \Delta_{+}$is a set of positive roots of G). Then Witten's invariant is equal to the path integral over all guage equivalence classes of G connection on M :

$$
\begin{equation*}
Z_{\alpha_{1}, \ldots, \alpha_{n}}(M, \mathscr{L} ; k)=\int\left[\mathscr{D} A_{\mu}\right] \exp \left(\frac{i}{\hbar} S_{C S}\right) \prod_{i=1}^{n} \operatorname{Tr}_{\alpha_{i}} \operatorname{Pexp}\left(\oint_{L_{i}} A_{\mu} d x^{\mu}\right) \tag{1.1}
\end{equation*}
$$

here A_{μ} is a connection, $S_{C S}$ is its Chern-Simons action,

$$
\begin{equation*}
S_{C S}=\frac{1}{2} \operatorname{Tr} \varepsilon^{\mu \nu \rho} \int_{M} d x\left(A_{\mu} \partial_{v} A_{\rho}+\frac{2}{3} A_{\mu} A_{v} A_{\rho}\right) \tag{1.2}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Work supported in part by the National Science Foundation under Grants No. PHY-92 09978 and 9009850 and by the R. A. Welch Foundation.

