On the Pointwise Behavior of Semi-Classical Measures

T. Paul¹, A. Uribe^{2, *}

¹ CEREMADE et CNRS, Université Paris-Dauphine, Place de Lattre de Tassigny, F-75775 Paris Cedex 16, France

Communications in Mathematical Physics © Springer-Verlag 1996

² Mathematics Department, University of Michigan, Ann Arbor, Michigan 48109, USA

Received: 29 August 1994/in revised form: 24 January 1995

Abstract: In this paper we concern ourselves with the small \hbar asymptotics of the inner products of the eigenfunctions of a Schrödinger-type operator with a coherent state. More precisely, let ψ_j^{\hbar} and E_j^{\hbar} denote the eigenfunctions and eigenvalues of a Schrödinger-type operator H_{\hbar} with discrete spectrum. Let $\psi_{(x,\xi)}$ be a coherent state centered at the point (x,ξ) in phase space. We estimate as $\hbar \to 0$ the averages of the squares of the inner products $(\psi_{(x,\xi)}^a, \psi_j^{\hbar})$ over an energy interval of size \hbar around a fixed energy, *E*. This follows from asymptotic expansions of the form

$$\sum_{j} \varphi\left(\frac{E_{j}(\hbar) - E}{\hbar}\right) |(\psi^{a}_{(x,\xi)}, \psi^{\hbar}_{j})|^{2} \sim \sum_{k=0}^{\infty} c_{k}(a)\hbar^{-n+\frac{1}{2}+k}$$

for certain test functions φ and Schwartz amplitudes *a* of the coherent state. We compute the leading coefficient in the expansion, which depends on whether the classical trajectory through (x, ξ) is periodic or not. In the periodic case the iterates of the trajectory contribute to the leading coefficient. We also discuss the case of the Laplacian on a compact Riemannian manifold.

Contents

1.	Introduction	230
2.	Coherent States and Hermite Distributions	238
3.	Semi-Classical Propagation of Coherent States	240
4.	Proof of Theorems 1.1 and 1.2.	245
5.	Proof of the Other Results	251
6.	The Gaussian Case and Related Poisson Formulas	252
7.	Discussion of the Results	254
8.	References	257

* Research supported in part by NSF grant DMS-9303778