The Integrable Hierarchy Constructed from
 a Pair of KdV-Type Hierarchies
 and its Associated W Algebra

L. Bonora ${ }^{1}$, Q.P. Liu ${ }^{2}$, C.S. Xiong ${ }^{3}$
${ }^{1}$ International School for Advanced Studies (SISSA/ISAS), Via Beirut 2, I-34014 Trieste, Italy and INFN, Sezione di Trieste, Trieste, Italy
${ }^{2}$ Institute of Theoretical Physics, Chinese Academy of Science, P.O. Box 2735, 100080 Beijing, PR China
${ }^{3}$ Physikalisches Institut der Universität Bonn, Nussallee 12, D-53115 Bonn, Germany

Received: 16 August 1994 / in revised form: 15 March 1995

Abstract

For any two arbitrary positive integers " n " and " m ", using the $m^{\text {th }} \mathrm{KdV}$ hierarchy and the $(n+m)^{\text {th }} \mathrm{KdV}$ hierarchy as building blocks, we are able to construct another integrable hierarchy (referred to as the ($n, m)^{\text {th }} \mathrm{KdV}$ hierarchy). The W-algebra associated to the second Hamiltonian structure of the $(n, m)^{\text {th }} \mathrm{KdV}$ hierarchy (called $W(n, m)$ algebra) is isomorphic via a Miura map to the direct sum of a W_{m}-algebra, a W_{n+m}-algebra and an additional $U(1)$ current algebra. In turn, from the latter, we can always construct a representation of a W_{∞}-algebra.

1. Introduction

Our purpose in this paper is to show how to construct new integrable hierarchies starting from a couple of KdV-type hierarchies plus a $U(1)$ current. Also in order to give the coordinates of our paper with respect to the current literature, let us recall a few fundamental things about KdV hierarchies.

There are two different descriptions of the $n^{\text {th }} \mathrm{KdV}$ hierarchy. One is based on the so-called pseudodifferential operator analysis (see [1]), in which we start from a differential operator L, called scalar Lax operator,

$$
\begin{equation*}
L=\partial^{n}+\sum_{i=1}^{n-1} u_{i} \partial^{n-i-1}, \quad \partial=\frac{\partial}{\partial x}, \tag{1.1}
\end{equation*}
$$

where the u_{i} 's are functions of the "space" coordinate x. Throughout the paper the symbol L will mean (1.1). After introducing the inverse ∂^{-1} of the derivative ∂ (i.e. the formal integration operator),

$$
\begin{aligned}
\partial \partial^{-1} & =\partial^{-1} \partial=1, \\
\partial^{-1} f(x) & =\sum_{l=0}^{\infty}(-1)^{l} f^{(l)} \partial^{-l-1},
\end{aligned}
$$

we can calculate the fractional powers of L.

