Communications in Mathematical Physics © Springer-Verlag 1996

The Integrable Hierarchy Constructed from a Pair of KdV-Type Hierarchies and its Associated W Algebra

L. Bonora¹, Q.P. Liu², C.S. Xiong³

 ¹ International School for Advanced Studies (SISSA/ISAS), Via Beirut 2, I-34014 Trieste, Italy and INFN, Sezione di Trieste, Trieste, Italy
² Institute of Theoretical Physics, Chinese Academy of Science, P.O. Box 2735, 100080 Beijing,

PR China

³ Physikalisches Institut der Universität Bonn, Nussallee 12, D-53115 Bonn, Germany

Received: 16 August 1994/in revised form: 15 March 1995

Abstract: For any two arbitrary positive integers "n" and "m", using the m^{th} KdV hierarchy and the $(n+m)^{\text{th}}$ KdV hierarchy as building blocks, we are able to construct another integrable hierarchy (referred to as the $(n,m)^{\text{th}}$ KdV hierarchy). The W-algebra associated to the second Hamiltonian structure of the $(n,m)^{\text{th}}$ KdV hierarchy (called W(n,m) algebra) is isomorphic via a Miura map to the direct sum of a W_m -algebra, a W_{n+m} -algebra and an additional U(1) current algebra. In turn, from the latter, we can always construct a representation of a W_{∞} -algebra.

1. Introduction

Our purpose in this paper is to show how to construct new integrable hierarchies starting from a couple of KdV-type hierarchies plus a U(1) current. Also in order to give the coordinates of our paper with respect to the current literature, let us recall a few fundamental things about KdV hierarchies.

There are two different descriptions of the n^{th} KdV hierarchy. One is based on the so-called pseudodifferential operator analysis (see [1]), in which we start from a differential operator L, called scalar Lax operator,

$$L = \partial^n + \sum_{i=1}^{n-1} u_i \partial^{n-i-1}, \qquad \partial = \frac{\partial}{\partial x}, \qquad (1.1)$$

where the u_i 's are functions of the "space" coordinate x. Throughout the paper the symbol L will mean (1.1). After introducing the inverse ∂^{-1} of the derivative ∂ (i.e. the formal integration operator),

$$\partial \partial^{-1} = \partial^{-1} \partial = 1 ,$$

$$\partial^{-1} f(x) = \sum_{l=0}^{\infty} (-1)^l f^{(l)} \partial^{-l-1} ,$$

we can calculate the fractional powers of L.