Commun. Math. Phys. 175, 63-88 (1996)

Functional Equation for Dynamical Zeta Functions of Milnor–Thurston Type

David Ruelle

I.H.E.S., 35, route de Chartres, F-91440 Bures-sur-Yvette, France

Received: 8 April 1994

Abstract: A Milnor-Thurston type dynamical zeta function $\zeta_L(Z)$ is associated with a family of maps of the interval (-1, 1). Changing the direction of time produces a new zeta function $\zeta'_L(Z)$. These zeta functions satisfy a functional equation $\zeta_L(Z)\zeta'_L(\varepsilon Z) = \zeta_0(Z)$ (where ε amounts to sign changes and, generically, $\zeta_0 \equiv 1$). The functional equation has non-trivial implications for the analytic properties of $\zeta_L(Z)$.

0. Introduction

Milnor and Thurston [2] have shown how the zeta function $\zeta(z)$ counting the periodic points of a piecewise monotone interval map f could be expressed in terms of a *kneading determinant* D(z). The zeta function considered by Milnor and Thurston is closely related to the Lefschetz zeta function ζ_L , which we shall use henceforth. Baladi and Ruelle [1] have shown how to replace z in the Milnor-Thurston formula by $Z = (z_1, \ldots, z_N)$, where the interval of definition of f is cut into subintervals with different weights z_i . We shall here use a further extension of the formula $\zeta_L(Z) = D(Z)$, where f is allowed to be multivalued. The inverse f^{-1} of f is again multivalued piecewise monotone; it is associated with a zeta function $\zeta'_L(Z)$. There is a natural relation (*functional equation*)

$$\zeta_L(Z)\zeta'_L(\varepsilon Z) = \zeta_0(Z) ,$$

where ε corresponds to some sign changes and $\zeta_0(Z)$ counts "exceptional" orbits (generically $\zeta_0(Z) = 1$). The analytic properties of $\zeta_L(Z)$ are related, via the kneading determinant D(Z), to the spectral properties of a *transfer operator* \mathcal{M}_Z . The spectral properties one shows that ζ_L is meromorphic in a certain domain, with poles only if 1 is an eigenvalue of \mathcal{M}_Z . Let \mathcal{M}'_Z denote the transfer operator corresponding to f^{-1} ; using the functional equation one shows that ζ_L can vanish only if 1 is an eigenvalue of \mathcal{M}'_Z .

In what follows we shall write ζ instead of ζ_L , and use a family (ψ_{ω}) of monotone maps, instead of the multivalued map f^{-1} . Warning: If the ψ_{ω} are the branches