Non-Commutative Chaotic Expansion of Hilbert-Schmidt Operators on Fock Space

Stéphane Attal
Institut de Recherche Mathématique Avancée, Université Louis Pasteur et C.N.R.S., 7, rue René Descartes, F-67084 Strasbourg Cedex, France

Received: 21 February 1994 /in revised form: 17 October 1994

Abstract

It is known, from a simple algebraic computation, that every HilbertSchmidt operator on the Fock space admits a Maassen-Meyer kernel. MaassenMeyer kernels are a non-commutative extension of the usual notion of chaotic expansion of random variables. Using an extension of the non-commutative stochastic integrals which allows to define these integrals on the whole Fock space, we prove that a Hilbert-Schmidt operator on Fock space is the sum of a series of iterated non-commutative stochastic integrals with respect to the basic three quantum noises. In this way we recover its Maassen-Meyer kernel which can be completely described from the operator itself.

1. Introduction

It is well-known that every square integrable functional f of the Wiener process $\left(W_{t}\right)_{t \geqq 0}$ admits a previsible representation, that is a representation as the sum of a constant (its expectation) and a stochastic integral of a previsible process with respect to W. But such a random variable also admits a chaotic expansion [7], that is, a representation of the form

$$
f=\mathbb{E}[f]+\sum_{n=1}^{\infty} \int_{0<t_{1}<\cdots<t_{n}} f_{n}\left(t_{1}, \ldots, t_{n}\right) d W_{t_{1}} \cdots d W_{t_{n}},
$$

where f_{n} is a square integrable function on the increasing simplex

$$
\Sigma_{n}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}, 0<t_{1}<\cdots<t_{n}\right\} .
$$

The set \mathscr{P}_{n} of subsets of \mathbb{R}^{+}with cardinality n can be clearly identified to Σ_{n}. The family $\left\{f_{n}\right\}$ can be viewed as a single square integrable function \widehat{f} on $\mathscr{P}=$ $\bigcup_{n} \mathscr{P}_{n}\left(\mathscr{P}_{0}=\{\emptyset\}\right)$, by putting $\widehat{f}(A)=f_{n}\left(t_{1}, \ldots, t_{n}\right)$ if $A=\left\{0<t_{1}<\cdots<t_{n}\right\} \in \mathscr{P}$, with the convention $\widehat{f}(\emptyset)=\mathbb{E}[f]$. With this "short notation" ([3]) the chaotic expansion of f can be written $f=\int_{\mathscr{P}} \widehat{f}(A) d W_{A}$.

On the boson Fock space Φ over $L^{2}\left(\mathbb{R}^{+}\right)$, which is isomorphic to the space of square integrable Wiener functionals ([15]), operators can be represented in two

