

A Special Class of Stationary Flows for Two-Dimensional Euler Equations: A Statistical Mechanics Description. Part II

E. Caglioti¹, P.L. Lions², C. Marchioro¹, M. Pulvirenti¹

¹ Dipartimento di Matematica, Università di Roma "La Sapienza," Roma, Italy

Received: 14 June 1994/in revised form: 17 November 1994

Abstract: We continue and conclude our analysis started in Part I (see [CLMP]) by discussing the microcanonical Gibbs measure associated to a N-vortex system in a bounded domain. We investigate the Mean-Field limit for such a system and study the corresponding Microcanonnical Variational Principle for the Mean-Field equation. We discuss and achieve the equivalence of the ensembles for domains in which we have the concentration at $\beta \to (-8\pi)^+$ in the canonical framework. In this case we have the uniqueness of the solutions of the Mean-Field equation. For the other kind of domains, for large values of the energy, there is no equivalence, the entropy is not a concave function of the energy, and the Mean-field equation has more than one solution. In both situations, we have concentration when the energy diverges. The Microcanonical Mean Field Limit for the N-vortex system is proven in the case of equivalence of ensembles.

Table of Contents

1.	Introduction	230
2.	Microcanonical and Canonical Variational Principle	231
3.	Free Energy and Entropy Functionals	237
4.	The Microcanonical Mean-Field Limit	241
5.	Microcanonical Ensemble in all R^2	245
6.	The MVP in absence of Concentration	245
7.	Non-uniqueness of the Solutions for the MFE	250
8.	Concentration for the Solutions of the CVP at $\beta = -8\pi$ for Simply	
	Connected Domains Close to a Circle	254

² Ceremade, Université Paris-Dauphine, Paris, France

Research partially supported by MURST (Ministero Ricerca Scientifica e Tecnologica) and CNR-GNFM (Consiglio Nazionale delle Ricerche-Gruppo Nazionale Fisica Matematica).