Commun. Math. Phys. 170, 629-668 (1995)

Magnetic Lieb–Thirring Inequalities

László Erdős*

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA. E-mail: erdlac@math.princeton.edu. Fax: (609)-258-1367

Received: 9 May 1994

Abstract: We study the generalizations of the well-known Lieb–Thirring inequality for the magnetic Schrödinger operator with nonconstant magnetic field. Our main result is the naturally expected magnetic Lieb–Thirring estimate on the moments of the negative eigenvalues for a certain class of magnetic fields (including even some unbounded ones). We develop a localization technique in path space of the stochastic Feynman–Kac representation of the heat kernel which effectively estimates the oscillatory effect due to the magnetic phase factor.

Contents

1.	Introduction	630
2.	Definitions, Conjectures, Results	631
	2.1. Magnetic Field with Constant Direction	631
	2.2. Magnetic Field with Arbitrary Direction	635
3.	Separation of the External Potential	637
4.	Feynman–Kac Formulas	642
	4.1. Two-Dimensional Case	642
	4.2. Three-Dimensional Case	644
5.	Bounded Magnetic Field with Weak Singularities	647
6.	Unbounded Magnetic Field; Reduction to the Main Lemma	648
7.	Proof of the Main Lemma	653
	7.1. A Sequence of Stopping Times	654
	7.2. Estimating I_0 (No Reflection)	655
	7.3. Estimating I_n for $n \ge 1$ Using Reflections	659
A.	Selfadjointness and Negative Essential Spectrum	664
В.	Counterexample	665
Re	ferences	667

* Work supported by the NSF grant PHY90-19433 A02, by the Alfred Sloan Foundation dissertation Fellowship and by the Erwin Schrödinger Institute for Mathematical Physics in Vienna.