

Renormalization Group Fixed Points in the Local Potential Approximation for $d \ge 3$

Paulo Cupertino Lima*

Departamento de Matemática, ICEx, UFMG, Universidade Federal de Minas Gerais 31270 Belo Horizonte, M.G., Brazil

Received: 1 March 1994/in revised form: 30 September 1994

Abstract: In the Local Potential Approximation, renormalization group equations reduce to a semilinear parabolic partial differential equation. Felder [8] has derived this equation and has constructed a family of non-trivial fixed points u_{2n}^* (n = 2, 3, 4, ...) which have the form of *n*-well potentials and exist in the ranges of dimensions $2 < d < 2 + \frac{2}{n-1}$. In this paper we show that if $d \ge 4$, then these non-trivial fixed points disappear, and if $3 \le d < 4$ then we have only the u_4^* fixed point.

1. Introduction

Non-trivial fixed points of the renormalization group (RG) play a crucial role in the understanding of statistical mechanical systems in the vicinity of the critical point [1, 2]. In the case of a symmetric scalar field the non-trivial fixed points are expected to appear as bifurcating from the trivial massless fixed point as one varies continuously the dimension d of the space [3]. These bifurcations occur at thresholds $d_n = 2 + \frac{2}{n-1}$, n = 2, 3, ..., where the linearized RG acquires a zero mode (the fixed point which appears at $d = d_n$ is called the ϕ_d^{2n} fixed point and it looks like a n - well potential). This pattern is not well understood from the mathematical point of view, but some pieces of it were established in toy models like Dyson's one [4]: Bleher and Sinai [5] proved the existence of a non-trivial fixed point if $d = d_n - \varepsilon$, where $\varepsilon > 0$ is small enough. Felder [8] showed that in the Local Potential Approximation the ϕ_d^{2n} fixed point exists for $2 < d < d_n$.

It is believed that the ϕ_d^{2n} fixed points disappear for $d \ge d_n$. Gawedzki and Kupiainen [6] showed that if $d \ge 4$ and the potential is even and "small" (weak coupling) then, under the flow of the *RG* transformation, it is driven to the Gaussian fixed point. Aizenman [7] showed in d > 4 dimensions that the (even) ϕ_d^d Euclidean field theory, with a cut-off, is inevitably free in the continuum limit. In this paper we show that in the Local Potential Approximation if $d \ge 4$ there is no non-trivial fixed point and if $3 \le d < 4$ the only non-trivial fixed point is the one which appears at d = 4, the ϕ_d^4 fixed point.

^{*}Research supported by CNPq, Brazil