© Springer-Verlag 1995

Toeplitz Algebras and Rieffel Deformations

L. A. Coburn, Jingbo Xia

Department of Mathematics, State University of New York, Buffalo, NY 14214

Received: 20 September 1993/in revised form: 7 May 1994

Abstract: We establish a representation theorem for Toeplitz operators on the Segal-Bargmann (Fock) space of \mathbb{C}^n whose "symbols" have uniform radial limits. As an application of this result, we show that Toeplitz algebras on the open ball in \mathbb{C}^n are "strict deformation quantizations", in the sense of M. Rieffel, of the continuous functions on the corresponding closed ball.

1. Introduction

In [R], Rieffel proposed a general scheme for producing "strict deformation quantizations" of C^* -algebras with \mathbf{R}^{2n} action. His scheme is modelled on classical Weyl quantization. As one example, Rieffel showed, following earlier work of Sheu [S], that the Toeplitz algebra $\tau(\mathbf{D})$ on the unit disc \mathbf{D} arises from his scheme as a strict deformation quantization of the sup norm algebra $C(\mathbf{D})$ of continuous functions on the closed unit disc. In this note, we extend Rieffel's analysis to show that the Toeplitz algebra $\tau(\mathbf{B}_{2n})$ of the unit ball \mathbf{B}_{2n} (in \mathbf{C}^n) is a strict deformation quantization of the algebra $C(\mathbf{B}_{2n})$ of continuous functions on the closed unit ball.

Let \mathbb{C}^n be the vector space of *n*-tuples of complex numbers with elements $z=(z_1,\ldots,z_n)$ and the usual norm $|z|=(|z_1|^2+\cdots+|z_n|^2)^{1/2}$. We denote by \mathbf{B}_{2n} the (real) 2*n*-dimensional open unit ball in \mathbb{C}^n , $\mathbf{B}_{2n}=\{z\in\mathbb{C}^n:|z|<1\}$, and write $S^{2n-1}=\{z\in\mathbb{C}^n:|z|=1\}$ for the unit sphere with $\bar{\mathbf{B}}_{2n}=\mathbf{B}_{2n}\cup S^{2n-1}$.

In what follows, we consider three related Hilbert spaces of functions on \mathbb{C}^n . The first is the Bergmann space of Lebesgue volume (dv)-square-integrable holomorphic functions on the open unit ball \mathbf{B}_{2n} , $H^2(\mathbf{B}_{2n})$. The next, is the space of Lebesgue surface area $(d\sigma)$ -square-integrable functions on the unit sphere S^{2n-1} which extend to be holomorphic in \mathbf{B}_{2n} , $H^2(S^{2n-1})$. Finally we have the Segal-Bargmann space $H^2(\mathbb{C}^n)$ of entire functions on \mathbb{C}^n which are square integrable with respect to the Gaussian measure $d\mu(z) = e^{-|z|^2/2}(2\pi)^{-n}dv(z)$. Here dv and $d\sigma$ are normalized by $v(\mathbf{B}_{2n}) = \pi^n/n!$ and $\sigma(S^{2n-1}) = 2\pi^n/(n-1)!$.