Coherent States of the *q*-Canonical Commutation Relations

P.E.T. Jørgensen^{1, 2}, R.F. Werner^{3, 4}

¹ Dept. of Mathematics, University of Iowa, Iowa City, IA 52242, USA

² Supported in part by the NSF(USA), and NATO

³ FB Physik, Universität Osnabrück, D-49069 Osnabrück, Germany

⁴ Electronic mail: reinwer@dosuni1.rz.Uni-Osnabrueck.DE

Received: 17 March 1992/in revised form: 4 January 1994

Abstract: For the q-deformed canonical commutation relations $a(f)a^{\dagger}(g) = (1-q) \langle f, g \rangle \mathbf{1} + qa^{\dagger}(g)a(f)$ for f, g in some Hilbert space \mathscr{H} we consider representations generated from a vector Ω satisfying $a(f)\Omega = \langle f, \varphi \rangle \Omega$, where $\varphi \in \mathscr{H}$. We show that such a representation exists if and only if $||\varphi|| \leq 1$. Moreover, for $||\varphi|| < 1$ these representations are unitarily equivalent to the Fock representation (obtained for $\varphi = 0$). On the other hand representations obtained for different unit vectors φ are disjoint. We show that the universal C*-algebra for the relations has a largest proper, closed, two-sided ideal. The quotient by this ideal is a natural q-analogue of the Cuntz algebra (obtained for q=0). We discuss the conjecture that, for $d < \infty$, this analogue should, in fact, be equal to the Cuntz algebra itself. In the limiting cases $q = \pm 1$ we determine all irreducible representations of the relations, and characterize those which can be obtained via coherent states.

1. Introduction

In this paper we study some new aspects of a set of commutation relations, depending on a parameter $q \in (-1, 1)$ studied by various authors on quite different motivations. Greenberg [15] introduced these relations as an interpolation between Bose (q = 1) and Fermi (q = -1) statistics. He was particularly interested in the observable consequences of a hypothetical small deviation from the Pauli principle. However, due to problems with field theoretical localizability [16] and thermodynamic stability [34], a naive particle interpretation of systems satisfying these relations is problematic. Speicher [33] introduced these relations as a new kind of quantum "noise," which could be used as a driving force in a quantum stochastic differential equation [23]. From the point of view of C*-algebra theory the relations became interesting as an example of a C*-algebra defined in terms of generators and relations. In this context it was observed that the relations reduce for q=0 to those studied by Cuntz [9].

Available by anonymous FTP from nostromo.physik.Uni-Osnabrueck.DE