Large Deviations for $\mathbb{Z}^{\boldsymbol{d}}$-Actions

A. Eizenberg ${ }^{\star}$, Y. Kifer ${ }^{\star}$, B. Weiss ${ }^{\star}$
Institute of Mathematics The Hebrew University, Jerusalem, Israel

Received: 13 January 1993

Abstract

We establish large deviations bounds for translation invariant Gibbs measures of multidimensional subshifts of finite type. This generalizes [FO] and partially [C, O, and B], where only full shifts were considered. Our framework includes, in particular, the hard-core lattice gas models which are outside of the scope of [FO, C, O, and B].

1. Introduction

In [R1] Ruelle rewrote a part of the general theory of statistical mechanics for the case of a \mathbb{Z}^{d}-action, $d \geqq 1$ on a compact metric space Ω satisfying expansiveness and the specification. The main model for which one constructs translation invariant Gibbs states (see [R2]) consists of a finite set Q taken with the discrete topology and called the alphabet (which may represent, for instance, the spin values etc.), the set $Q^{\mathbb{Z}^{d}}$ considered with the product topology (making it compact) of all maps (configurations) $\omega: \mathbb{Z}^{d} \rightarrow Q$, the shifts $\theta_{m}, m \in \mathbb{Z}^{d}$ of $Q^{\mathbb{Z}^{d}}$ acting by the formula $\left(\theta_{m} \omega\right)_{n}=\omega_{n+m}$, where $\omega_{k} \in Q$ is the value of $\omega \in Q^{\mathbb{Z}^{d}}$ on $k \in \mathbb{Z}^{d}$, and a closed in the product topology subset Ω of $Q^{\mathbb{Z}^{d}}$ called the space of (permissible) configurations which is supposed to be shift invariant, i.e. $\theta_{m} \Omega=\Omega$ for every $m \in \mathbb{Z}^{d}$. The pair (Ω, θ) is called a subshift and if $\Omega=Q^{\mathbb{Z}^{d}}$ it is called the full shift. The construction in [R2] assumes, in fact, that (Ω, θ) is a subshift of finite type (see [Sh]) which means that there exist a finite set $F \subset \mathbb{Z}^{d}$ and a set $\Xi \subset Q^{F}$ such that

$$
\begin{equation*}
\Omega=\Omega_{(F, \Xi)}=\left\{\omega \in Q^{\mathbb{Z}^{d}}:\left(\theta_{m} \omega\right)_{F} \in \Xi \text { for every } m \in \mathbb{Z}^{d}\right\} \tag{1.1}
\end{equation*}
$$

where $(\omega)_{R}=\omega_{R}$ denotes the restriction of $\omega \in Q^{\mathbb{Z}^{d}}$ to $R \subset \mathbb{Z}^{d}$. The set $\Xi \subset Q^{F}$ is the collection of permissible (allowed) words or configurations on F.

[^0]
[^0]: * Partially supported by US-Israel BSF. Partially sponsored by the Edmund Landau Center for research in Mathematical Analysis, supported by the Minerva Foundation (Germany).

