Commun. Math. Phys. 164, 421-432 (1994)

Communications in Mathematical Physics © Springer-Verlag 1994

Zero Measure Spectrum for the Almost Mathieu Operator

Y. Last

Department of Physics, Technion - Israel Institute of Technology, 32000 Haifa, Israel

Received: 13 September 1993

Abstract: We study the almost Mathieu operator: $(H_{\alpha,\lambda,\theta}u)(n) = u(n+1) + u(n-1) + \lambda \cos(2\pi\alpha n + \theta)u(n)$, on $l^2(Z)$, and show that for all λ, θ , and (Lebesgue) a.e. α , the Lebesgue measure of its spectrum is precisely $|4-2|\lambda||$. In particular, for $|\lambda| = 2$ the spectrum is a zero measure cantor set. Moreover, for a large set of irrational α 's (and $|\lambda| = 2$) we show that the Hausdorff dimension of the spectrum is smaller than or equal to 1/2.

1. Introduction

In this paper, we study the almost Mathieu (also called Harper's) operator on $l^2(Z)$. This is the (bounded, self adjoint) operator $H_{\alpha,\lambda,\theta}$, defined by:

$$\begin{aligned} H_{\alpha,\lambda,\theta} &= H_0 + V_{\alpha,\lambda,\theta} \,, \qquad (H_0 u) \, (n) = u(n+1) + u(n-1) \,, \\ &\quad (V_{\alpha,\lambda,\theta} u) \, (n) = \lambda \cos(2\pi\alpha n + \theta) u(n) \,, \end{aligned}$$

where $\alpha, \lambda, \theta \in R$.

 $H_{\alpha,\lambda,\theta}$ is a tight binding model for the Hamiltonian of an electron in a one dimensional lattice, subject to a commensurate (if α is rational) or incommensurate (if α is irrational) potential. It is also related to the Hamiltonian of an electron in a two dimensional lattice, subject to a perpendicular magnetic field [11, 13] (in which case the relevant energy spectrum is the union over θ of the energy spectra of $H_{\alpha,\lambda,\theta}$).

The almost Mathieu operator has been studied by many authors [1–13, 15, 17–24, 26], and many of its spectral characteristics are known. Our main result in this paper is:

Theorem 1. If α is an irrational, for which there is a sequence of rationals $\{p_n/q_n\}$ obeying:

$$\lim_{n \to \infty} q_n^2 \left| \alpha - \frac{p_n}{q_n} \right| = 0 \,,$$

Work partially supported by the GIF