Conformal Blocks and Generalized Theta Functions

Arnaud Beauville, Yves Laszlo ${ }^{\star}$
URA 752 du CNRS, Mathématiques - Bât 425, Université Paris-Sud, F-91405 Orsay Cedex, France

Received: 6 September 1993/in revised form: 15 November 1993

Abstract

Let $\mathscr{S} \mathscr{C}_{X}(r)$ be the moduli space of rank r vector bundles with trivial determinant on a Riemann surface X. This space carries a natural line bundle, the determinant line bundle \mathscr{C}. We describe a canonical isomorphism of the space of global sections of \mathscr{L}^{k} with the space of conformal blocks defined in terms of representations of the Lie algebra $\mathfrak{s l}_{r}(\mathbf{C}((z)))$. It follows in particular that the dimension of $H^{0}\left(\mathscr{S} \mathscr{U}_{X}(r), \mathscr{L}^{k}\right)$ is given by the Verlinde formula.

Introduction

The aim of this paper is to construct a canonical isomorphism between two vector spaces associated to a Riemann surface X. The first of these spaces is the space of conformal blocks $B_{c}(r)$ (also called the space of vacua), which plays an important role in conformal field theory. It is defined as follows: choose a point $p \in X$, and let A_{X} be the ring of algebraic functions on $X-p$. To each integer $c \geq 0$ is associated a representation V_{c} of the Lie algebra $\mathfrak{s l}_{r}(\mathbf{C}(z))$), the basic representation of level c (more correctly it is a representation of the universal extension of $\mathfrak{s l}_{r}(\mathbf{C}((z)))$ - see Sect. 7 for details). The ring A_{X} embeds into $\mathbf{C}((z))$ by associating to a function its Laurent development at p; then $B_{c}(r)$ is the space of linear forms on V_{c} which vanish on the elements $A(z) v$ for $A(z) \in \mathfrak{s l}_{r}\left(A_{X}\right), v \in V_{c}$.

The second space comes from algebraic geometry, and is defined as follows. Let $\mathscr{S} \mathscr{U}_{X}(r)$ be the moduli space of semi-stable rank r vector bundles on X with trivial determinant. One can define a theta divisor on $\mathscr{S} \mathscr{U}_{X}(r)$ in the same way one does in the rank 1 case: one chooses a line bundle L on X of degree $g-1$, and considers the locus of vector bundles $E \in \mathscr{S} \mathscr{U}_{X}(r)$ such that $E \otimes L$ has a nonzero section. The associated line bundle \mathscr{L} is called the determinant bundle; the space we are interested in is $H^{0}\left(\mathscr{S}_{\mathscr{U}}{ }_{X}(r), \mathscr{S}^{c}\right)$. This space can be considered as a non-Abelian version of the

[^0]
[^0]: * Both authors were partially supported by the European Science Project "Geometry of Algebraic Varieties," Contract no. SCI-0398-C(A)

