Commun. Math. Phys. 164, 1-15 (1994)

An Explicit Description of the Fundamental Unitary for SU(2)₉

E. Christopher Lance

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA; Permanent address: School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

Received: 17 May 1993

Abstract: We give a concrete description of an isometry v from $\ell^2(\mathbb{N} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z})$ to $\ell^2(\mathbb{N} \times \mathbb{Z} \times \mathbb{N} \times \mathbb{Z})$ whose existence has recently been discovered by Woronowicz [11]. The isometry v gives the comultiplication δ on the C*-algebra A of the quantum group SU(2)_q through the formula $\delta(x) = v(x \otimes 1)v^*(x \in A)$, where 1 is the identity operator on $\ell^2(\mathbb{Z} \times \mathbb{Z})$. The matrix entries of v are described in terms of little q-Jacobi polynomials. Using v, we give a concrete description of a unitary operator V on $H_\eta \otimes H_\eta$ such that $(\pi_\eta \otimes \pi_\eta)\delta(x) = V(\pi_\eta(x) \otimes 1)V^*$, where $H_\eta = \ell^2(\mathbb{N} \times \mathbb{Z} \times \mathbb{N})$ and π_η : $A \to L(H_\eta)$ is the GNS representation associated with the Haar state η on A. The operator V satisfies the pentagonal identity of Baaj and Skandalis [1].

1. Introduction

The C*-algebra A of the quantum group $SU(2)_q$, where 0 < q < 1, is a unital C*-algebra with generators a, c and relations that make

$$\begin{pmatrix} a & -qc^* \\ c & a^* \end{pmatrix}$$
 (1.1)

a unitary element of $M_2(A)$, namely

$$a^*a + c^*c = aa^* + q^2c^*c = 1$$
,
 $ac = qca, \quad ac^* = qc^*a, \quad cc^* = c^*c$. (1.2)

There is a natural representation of A on the Hilbert space $\ell^2(\mathbb{N} \times \mathbb{Z})$, which was described by Woronowicz [9] as follows. For any set I, denote the standard orthonormal basis of $\ell^2(I)$ by $\{\varepsilon_i: i \in I\}$; if J is another index set then we identify $\ell^2(I) \otimes \ell^2(J)$ with $\ell^2(I \times J)$ by the correspondence $\varepsilon_i \otimes \varepsilon_j \leftrightarrow \varepsilon_{(i, j)}$ ($i \in I, j \in J$), and we abbreviate $\varepsilon_{(i, j)}$ to $\varepsilon_{i, j}$. Define bounded linear operators a, c on $\ell^2(\mathbb{N} \times \mathbb{Z})$ by

$$a\varepsilon_{ki} = (1 - q^{2k})^{1/2} \varepsilon_{k-1\,i}, \quad c\varepsilon_{ki} = q^k \varepsilon_{k\,i-1} \ (k \in \mathbb{N}, i \in \mathbb{Z}) \ . \tag{1.3}$$