An Explicit Description of the Fundamental Unitary for $\mathbf{S U (2) q}$

E. Christopher Lance

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA; Permanent address: School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

Received: 17 May 1993

Abstract

We give a concrete description of an isometry v from $\ell^{2}(\mathbb{N} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z})$ to $\ell^{2}(\mathbb{N} \times \mathbb{Z} \times \mathbb{N} \times \mathbb{Z})$ whose existence has recently been discovered by Woronowicz [11]. The isometry v gives the comultiplication δ on the C^{*}-algebra A of the quantum group $\mathrm{SU}(2)_{q}$ through the formula $\delta(x)=v(x \otimes 1) v^{*}(x \in A)$, where 1 is the identity operator on $\ell^{2}(\mathbb{Z} \times \mathbb{Z})$. The matrix entries of v are described in terms of little q-Jacobi polynomials. Using v, we give a concrete description of a unitary operator V on $H_{\eta} \otimes H_{\eta}$ such that $\left(\pi_{\eta} \otimes \pi_{\eta}\right) \delta(x)=V\left(\pi_{\eta}(x) \otimes 1\right) V^{*}$, where $H_{\eta}=\ell^{2}(\mathbb{N} \times \mathbb{Z} \times \mathbb{N})$ and $\pi_{\eta}: A \rightarrow L\left(H_{\eta}\right)$ is the GNS representation associated with the Haar state η on A. The operator V satisfies the pentagonal identity of Baaj and Skandalis [1].

1. Introduction

The C^{*}-algebra A of the quantum group $\mathrm{SU}(2)_{q}$, where $0<q<1$, is a unital C^{*}-algebra with generators a, c and relations that make

$$
\left(\begin{array}{rr}
a & -q c^{*} \tag{1.1}\\
c & a^{*}
\end{array}\right)
$$

a unitary element of $M_{2}(A)$, namely

$$
\begin{gather*}
a^{*} a+c^{*} c=a a^{*}+q^{2} c^{*} c=1 \\
a c=q c a, \quad a c^{*}=q c^{*} a, \quad c c^{*}=c^{*} c \tag{1.2}
\end{gather*}
$$

There is a natural representation of A on the Hilbert space $\ell^{2}(\mathbb{N} \times \mathbb{Z})$, which was described by Woronowicz [9] as follows. For any set I, denote the standard orthonormal basis of $\ell^{2}(I)$ by $\left\{\varepsilon_{i}: i \in I\right\}$; if J is another index set then we identify $\ell^{2}(I) \otimes \ell^{2}(J)$ with $\ell^{2}(I \times J)$ by the correspondence $\varepsilon_{i} \otimes \varepsilon_{j} \leftrightarrow \varepsilon_{(i, j)}(i \in I, j \in J)$, and we abbreviate $\varepsilon_{(i, j)}$ to $\varepsilon_{i j}$. Define bounded linear operators a, c on $\ell^{2}(\mathbb{N} \times \mathbb{Z})$ by

$$
\begin{equation*}
a \varepsilon_{k i}=\left(1-q^{2 k}\right)^{1 / 2} \varepsilon_{k-1 i}, \quad c \varepsilon_{k i}=q^{k} \varepsilon_{k i-1}(k \in \mathbb{N}, i \in \mathbb{Z}) . \tag{1.3}
\end{equation*}
$$

