Commun. Math. Phys. 163, 307-357 (1994)

On the Classification of Simple Vertex Operator Algebras

Bong H. Lian

University of Toronto, Department of Mathematics, Toronto, Ontario, Canada, M5S 1A1

Received: 3 March 1993

Abstract: Inspired by a recent work of Frenkel–Zhu, we study a class of (pre-)vertex operator algebras (voa) associated to the self-dual Lie algebras. Based on a few elementary structural results we propose that \mathscr{V} , the category of \mathbb{Z}_+ -graded prevoas V in which V [0] is one-dimensional, is a proper setting in which to study and classify simple objects. The category \mathscr{V} is organized into what we call the minimal k^{th} types. We introduce a functor Γ – which we call the Frenkel–Lepowsky–Meurman functor – that attaches to each object in \mathscr{V} a Lie algebra. This is a key idea which leads us to a (relative) classification of the *simple minimal first type*. We then study the set of all Virasoro structures on a fixed minimal first type V, and show that they are in turn classified by the orbits of the automorphism group Aut($\Gamma(V)$) in cent($\Gamma(V)$). Many new examples of voas are given. Finally, we introduce a generalized Kac–Casimir operator and give a simple proof of the irreducibility of the prolongation modules over the affine Lie algebras.

Contents

1.	Introduction	308
	1.1 Conformal field theory, quantum groups and Chern-Simons	
	–Witten theory	309
	1.2 The Virasoro action	310
	1.3 Problem statements	311
	1.4 Organization	311
	1.5 Notations	311
2.	Preparations	312
		312
		313
	2.3 Normal ordering	314