Commun Math. Phys. 162, 47-59 (1994)

A Nonlinear Instability for 3×3 Systems of Conservation Laws

J. L. Joly¹, G. Metivier², J. Rauch³

¹ Université de Bordeaux I

² Université de Rennes I

³ Ecole Polytechnique and University of Michigan

Received: 7 February 1993/in revised form: 14 July 1993

Abstract: The phenomenon of nonlinear resonance provides a mechanism for the unbounded amplification of small solutions of systems of conservation laws. We construct spatially 2π -periodic solutions $u^N \in C^{\infty}([0, t_N] \times \mathbb{R})$ with t_N bounded, satisfying

$$\|u^N\|_{L^{\infty}([0, t_N] \times \mathbb{R})} \to 0, \quad \int_{0}^{2\pi} |\partial_x u^N(0, x)| \, dx \leq C ,$$
$$\int_{0}^{2\pi} |\partial_x u^N(t_N, x)| \, dx \geq N, \quad \|u^N(t_N, x)\|_{L^p(\mathbb{R})} \geq N \|u^N(0, x)\|_{L^p(\mathbb{R})} \quad 1 \leq p \leq \infty .$$

The variation grows arbitrarily large, and the sup norm is amplified by arbitrarily large factors.

Outline.

1.	Main result $\cdots \cdots \cdots \cdots \cdots \cdots$	•	•	•	•	•	•	•		•		•	•	•						•		•	•	47
2.	Derivation of the Profile Equation	·		·	·		·	•	•	·	·	•	•	•	•	·	•	·	•	·	•	·	·	51
	Two Explosive Profiles • • • •																							
4	Existence for the Profile Equation	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·		•	•	·	•	54
5	Blowup for the Profile Equation .	·	·	·	·	•	·	·	·	·	•	•	•	•	·	·	•	·	·	·	·	·	·	56

1. Main Result

The main existence theorems for $k \times k$ systems of conservation laws [G, CS, GL, NS, D, Y], have a common feature: either the systems under consideration have $k \leq 2$, or the initial data are of small total variation. In the latter cases, the variation is uniformly bounded by a fixed multiple of the initial variation. In this note we explain that these restrictions are essential. When $k \geq 3$, nonlinear resonance is a