Solutions with High Dimensional Singular Set, to a Conformally Invariant Elliptic Equation in \mathbb{R}^{4} and in \mathbb{R}^{6}

Frank Pacard
ENPC-CERGRENE, La Courtine, F-93167 Noisy la Grand Cedex, France

Received: 2 March 1993

Abstract

We construct positive weak solutions to the equation $-\Delta_{0} v=v^{\frac{n+2}{n-2}}$, where $-\Delta_{0}$ denotes the conformal Laplacian on the n-sphere ($n=4,6$), having singular sets of Hausdorff dimension greater than or equal to $\frac{n-2}{2}$.

1. Introduction

In their paper, Schoen and Yau have stated the following conjecture:
Conjecture [8]: All positive weak solutions of $-\Delta_{0} v=v^{\frac{n+2}{n-2}}$, with $v \in L^{\frac{n+2}{n-2}}\left(\mathbb{S}^{n}\right)$, have singular set of Hausdorff dimension less than or equal to $(n-2) / 2$. Here $-\Delta_{0}$ denotes the conformal Laplacian for the standard metric on the sphere \mathbb{S}^{n}.

This problem can be formulated in \mathbb{R}^{n} as follows [9]: We define the measure $d \mu=\left(1+|x|^{2}\right)^{-n} d x$ on \mathbb{R}^{n}. Assume that $u \in L^{\frac{n+2}{n-2}}\left(\mathbb{R}^{n}, d \mu\right)$ is a weak positive solution of

$$
\begin{equation*}
-\Delta u=u^{\frac{n+2}{n-2}} \tag{1}
\end{equation*}
$$

Then, the Hausdorff dimension of the singular set if u is less than or equal to $(n-2) / 2$.
Many attempts have been made to find solutions of (1) with a prescribed singular set. In a very difficult paper [7], Schoen builds solutions of (1) with prescribed isolated singularities. In another paper [8], Schoen and Yau have used the geometrical meaning of Eq. (1) in order to derive, through ideas of conformal geometry, the existence of singular solutions having a singular set whose Hausdorff dimension is less than or equal to $(n-2) / 2$. More recently Mazzeo and Smale have proved in [4] the existence of solutions of (1) singular over some manifold which is a small deformation of a sphere \mathbb{S}^{k}, with $k<(n-2) / 2$. Their method is based on the study of degenerate operators.

In this paper, we give some counter-examples to the conjecture stated above when $n=4$ and when $n=6$. More precisely, we prove the result:

