Vertex Representations for N-Toroidal Lie Algebras and a Generalization of the Virasoro Algebra

S. Eswara Rao ${ }^{1}$, R.V. Moody ${ }^{2 *}$
${ }^{1}$ School of Mathematics, Tata Institute of Fundamental Research, Bombay 400005 , India
${ }^{2}$ Department of Mathematics, University of Alberta, Edmonton (Alberta) T6G 2G1, Canada

Received: 17 November 1992/in revised form: 4 May 1993

Abstract

Vertex representations are obtained for toroidal Lie algebras for any number of variables. These representations afford representations of certain n-variable generalizations of the Virasoro algebra that are abelian extensions of the Lie algebra of vector fields on a torus.

0. Introduction

In this paper we construct faithful vertex operator representations for the universal central extension τ_{n} of $\mathfrak{g} \otimes \mathbb{C}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, where \mathfrak{g} is a simple, simply-laced finite dimensional Lie algebra over \mathbb{C}. We call τ_{n} the n-toroidal Lie algebra. These representations also afford representations for an abelian extension of the Lie algebra of derivations of $\mathbb{C}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$. This latter Lie algebra is a generalization of the Virasoro algebra, and so this whole construction is a generalization of both the Frenkel-Kac and the Segal-Sugawara constructions which are well known for the case $n=1$.

For a suitable non-degenerate integral lattice Γ and an even integral sublattice Q (cf. Sect. 3), we construct the Fock space $V(\Gamma, \mathfrak{b})=\mathbb{C}[\Gamma] \otimes S\left(\mathfrak{b}_{-}\right)$, where \mathfrak{b} is a Heisenberg algebra defined by Γ. For each α in Q we define vertex operator $X(\alpha, z)$ (cf. 3.7) such that its Fourier components $X_{n}(\alpha)$ act on $V(\Gamma, \mathfrak{b})$. Our first result (Theorem 3.14) says that the Lie algebra generated by operators $X_{k}(\alpha)(\alpha \in$ $Q,(\alpha \mid \alpha)=2)$ is isomorphic to $\tau_{[n]}$. We also prove that the "zero moments" (taking $k=0$ above) generate the Lie algebra $\tau_{[n-1]}$ (Theorem 3.17).

Theorem 3.14 in the case $n=1$ is due to Frenkel-Kac [FK] and $\tau_{[1]}$ is the nontwisted affine Lie algebra. The case $n=2$ is due to [MEY]. Our method of proof here differs considerably from that of [MEY]. It is more explicit in the sense that we give operators for every vector of $\tau_{[n]}$ and prove that the necessary commutators hold. For example the vector $h \otimes t_{1}^{r_{1}} t_{2}^{r_{2}} \cdots t_{n}^{r_{n}}$ in $\tau_{[n]}$ is represented by the operator $T_{r_{n}}^{h}\left(\delta_{\underline{r}}\right)$ (cf. 3.10) which is not clear from [MEY]. A significant difference is the

[^0]
[^0]: * Work supported in part by the Natural Sciences and Engineering Research Council of Canada.

