The Second Gelfand–Dickey Bracket as a Bracket on a Poisson–Lie Grassmannian

Ilya Zakharevich

Department of Mathematics, M.I.T., Cambridge, MA 02139, USA

Received: December 1, 1992

Dedicated to Israel M. Gelfand at his 80th birthday

Abstract: We introduce a Poisson structure on a Grassmannian $Gr_k(V)$ on which the Poisson-Lie group GL(V) acts in a Poisson-Lie way. We discuss the analytic complications connected with the infinite-dimensional case $V = C^{\infty}(\mathbb{R})$ and show that an open subset of $Gr_k(V)$ with this Poisson structure is isomorphic to the Gelfand-Dickey manifold of differential operators of order k with the second Gelfand-Dickey bracket. In fact we introduce as a consequence a Poisson-Lie action of an enormous group on the Gelfand-Dickey manifold generalizing (on the semiclassical level) the Sugavara inclusion.

Contents

0.	Introduction	94
1.	Classical r-matrices and Poisson–Lie structures	96
	1.1. The classical Yang-Baxter equation	96
	1.2. Poisson manifolds	97
	1.3. Skewsymmetric <i>r</i> -matrices	98
	1.4. The Modified Yang-Baxter equation	100
	1.5. Homogeneous spaces with Poisson-Lie action	102
2.	Gelfand-Dickey brackets	104
	2.0. The second Gelfand–Dickey bracket on the set of differential	
	operators	105
	2.1. The identification with a Grassmannian	107
	2.2. A Poisson-Lie algebra of differential operators as a Poisson-Lie	
	subalgebra of gl	111
	2.3. The periodical case	112
	2.4. The matrix case	114
	2.5. A conjecture on quantization: the Kac-Moody case	115
	2.6. The topological approach	116
R	eferences	119