Irreducible Representations of Virasoro-Toroidal Lie Algebras

Marc A. Fabbri, Robert V. Moody

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Received: 16 November 1992/in revised form: 10 May 1993

To A. John Coleman on the occasion of his 75th birthday

Abstract: Toroidal Lie algebras and their vertex operator representations were introduced in [MEY] and a class of indecomposable modules were investigated. In this work, we extend the toroidal algebra by the Virasoro algebra thus constructing a semi-direct product algebra containing the toroidal algebra as an ideal and the Virasoro algebra as a subalgebra. With the use of vertex operators and certain oscillator representations of the Virasoro algebra it is proved that the corresponding Fock space gives rise to a class of irreducible modules for the Virasoro-toroidal algebra.

Introduction

Toroidal algebras $t_{[n]}$ are defined for every $n \ge 1$ and when n = 1 they are precisely the untwisted affine algebras. Such an affine algebra g can be realized as the universal covering algebra of the loop algebra $\dot{g} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$ where \dot{g} is a simple finite dimensional Lie algebra over \mathbb{C} . It is well known that g is a one-dimensional central extension of $\dot{g} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$. The toroidal algebras $t_{[n]}$ are the universal covering algebras of iterated loop algebras $\dot{g} \otimes_{\mathbb{C}} \mathbb{C}[t^{\frac{1}{1}}, \ldots, t^{\frac{1}{n}}]$ which, for $n \ge 2$, turn out to be infinite-dimensional central extensions.

Unlike the finite dimensional case, there is a distinguished irreducible highest weight module for any untwisted (or direct) affine Lie algebra. This is the *basic* representation. In 1980 Frenkel and Kac [FK] gave a remarkable construction of the basic representation by using vertex operators $X(\alpha, z)$, where α runs over the root lattice \dot{Q} of \dot{g} . Already in [FK] it was observed that the Virasoro algebra also operates on the basic representation and in particular the (energy) operator d_0 plays a distinguished role.

A decade later, the vertex operators $X(\alpha, z)$, where α now lies in the affine root lattice, $Q = \dot{Q} \oplus \mathbb{Z}\delta$, were used to produce indecomposable representations of the toroidal algebras $t_{[2]}$ [MEY]. Soon after, these results were shown [EM] to extend to arbitrary *n*.

However these representations are not completely reducible, nor do irreducible representations appear in a natural way in the picture. The objective of this paper is