Commun. Math. Phys. 158, 241-266 (1993)

Monopoles, Braid Groups, and the Dirac Operator

Ralph L. Cohen^{1*} and John D. S. Jones²

¹ Department of Mathematics, Stanford University, Stanford, CA 94305, USA

² Mathematics Institute, University of Warwick, Coventry CV4 7AL, England

Received: 23 March 1992/in revised form: 10 February 1993

Abstract. Using the relation between the space of rational functions on \mathbb{C} , the space of SU(2)-monopoles on \mathbb{R}^3 , and the classifying space of the braid group, see [10], we show how the index bundle of the family of real Dirac operators coupled to SU(2)-monopoles can be described using permutation representations of Artin's braid groups. We also show how this implies the existence of a pair consisting of a gauge field A and a Higgs field Φ on \mathbb{R}^3 whose corresponding Dirac equation has an arbitrarily large dimensional space of solutions.

1. Introduction and Statement of Results

Let \mathcal{M}_k denote the space of based, SU(2) monopoles in \mathbb{R}^3 of charge k. Thus an element of \mathcal{M}_k is represented by a configuration (A, Φ) , where A, the gauge field, is a smooth connection on the trivial SU(2) bundle P over \mathbb{R}^3 and Φ , the Higgs field, is a smooth section of the vector bundle associated to P via the adjoint representation. Since the bundle P is trivial A can be identified with a smooth 1-form on \mathbb{R}^3 with values in the Lie algebra $\mathfrak{su}(2)$ and Φ can be identified with a smooth function $\Phi: \mathbb{R}^3 \to \mathfrak{su}(2)$. We equip \mathbb{R}^3 with its standard metric and orientation and $\mathfrak{su}(2)$ with its standard invariant inner product. The pair (A, Φ) is a monopole if it satisfies the following conditions:

- (1) $1 |\Phi| \in L^6(\mathbb{R}^3)$.
- (2) The pair (A, Φ) has finite energy; that is the Yang–Mills–Higgs functional is finite

$$\mathscr{U}(A, \Phi) = \frac{1}{2} \int_{\mathbb{R}^3} \left(|F_A|^2 + |D_A \Phi|^2 \right) \mathrm{dvol} < \infty$$

Here D_A is the covariant derivative operator defined by A and F_A is the curvature of A.

^{*} The first author was supported by a grant from the NSF