© Springer-Verlag 1993

Spectral Properties of Random Schrödinger Operators with Unbounded Potentials

Y.A. Gordon¹, V. Jakšić²*, S. Molčanov¹, and B. Simon³**

- ¹ Department of Mathematics and Mechanics, Moscow State University, Moscow 119808, Russia
- ² Department of Mathematics, University of Toronto, Toronto, M5S-1A1, Canada
- ³ Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

Received May 25, 1992

Abstract. We investigate spectral properties of random Schrödinger operators $H_{\omega} = -\Delta + \xi_n(\omega)(1 + |n|^{\alpha})$ acting on $l^2(Z^d)$, where ξ_n are independent random variables uniformly distributed on [0, 1].

1. Introduction

It is already a part of folklore that multiplicative perturbations of the Anderson model show rather "unusual" spectral behavior. The basic paradigm is the discrete Schrödinger operator on $l^2(Z^1)$,

$$H_{\omega}u(n) = 2u(n) - u(n+1) - u(n-1) + V_{\omega}(n)u(n) ,$$

$$V_{\omega}(n) = \lambda \xi_n(\omega)|n|^{\alpha} ,$$

where $\xi_n(\omega)$ are independent random variables with a bounded, compactly supported density r(x), and λ is a parameter. For $\alpha < 0$ the above model has been extensively studied in [5, 7, 8, 18] and their main results can be summarized as follows (note that for $\alpha < 0$, $V_{\omega}(n) \to 0$ as $|n| \to \infty$ and thus $\sigma_{\rm ess}(H_{\omega}) = [0, 4]$).

Theorem. With probability 1:

- (i) For $-1/2 < \alpha < 0$, the spectrum in [0, 4] is pure point with eigenfunctions decaying as $\exp(-C|n|^{1+2\alpha})$.
- (ii) For $\alpha < -1/2$, the spectrum in [0, 4] is purely absolutely continuous.
- (iii) For $\alpha=-1/2$ and λ large, the spectrum in [0,4] is pure point with polynomially decaying eigenfunctions, while for λ small H_{ω} will have some singular continuous spectrum.

^{*} Research partially supported by a Sloan Doctoral Dissertation Fellowship and NSERC under grant OGP-0007901

^{**} Research partially supported by NSF grant DMS-9101716