Commun. Math. Phys. 156, 527-546 (1993)

Invariant Connections and Vortices

Oscar García-Prada*

Institut des Hautes Etudes Scientifiques, 35 route de Chartres, F-91440 Bures-sur-Yvette, France

Received February 21, 1992; in revised form August 31, 1992

Abstract. We study the vortex equations on a line bundle over a compact Kähler manifold. These are a generalization of the classical vortex equations over \mathbb{R}^2 . We first prove an invariant version of the theorem of Donaldson, Uhlenbeck and Yau relating the existence of a Hermitian-Yang-Mills metric on a holomorphic bundle to the stability of such a bundle. We then show that the vortex equations are a dimensional reduction of the Hermitian-Yang-Mills equation. Using this fact and the theorem above we give a new existence proof for the vortex equations and describe the moduli space of solutions.

Introduction

In this paper we shall study a direct generalization of the vortex equations on \mathbb{R}^2 in which the euclidean plane is replaced by a compact Kähler manifold.

The vortex equations on \mathbb{R}^2 were first introduced in 1950 by Ginsburg and Landau [9] in the study of superconductivity. Geometrically they correspond to the equations satisfied by the absolute minima of the Yang-Mills-Higgs functional, defined for a unitary connection A and a smooth section ϕ of a Hermitian line bundle over \mathbb{R}^2 as

YMH(A,
$$\phi$$
) = $\int_{\mathbb{R}^2} |F_A|^2 + |d_A \phi|^2 + \frac{1}{4} (1 - |\phi|^2)^2$.

Here F_A is the curvature of A and $d_A \phi$ is the covariant derivative of ϕ .

If we regard \mathbb{R}^2 as the complex plane we may decompose with respect to the complex structure to get $d_A = d'_A + d''_A$. Then by integration by parts we can show that the functional above is bounded below by $2\pi d$, where d is an integer called the *vortex number*, and this minimum is attained if and only if

$$\left. \begin{array}{l} d''_A \phi = 0 \\ F_A = \frac{1}{2} * (1 - |\phi|^2) \end{array} \right\} \; . \label{eq:FA}$$

^{*} Current address: Université de Paris-Sud, Mathématique, Bât. 425, F-91405 Orsay Cedex, France