

The Integrated Density of States for the Difference Laplacian on the Modified Koch Graph

Leonid Malozemov

Department of Applied Mathematics, Moscow Civil Engineering Institute, Yaroslavskoe Shosse, 26, Moscow 129337, Russia. Present address: Division of Physics, Mathematics and Astronomy, California Institute of Technology 253-37, Pasadena, CA 91125, USA

Received November 23, 1992; in revised form January 13, 1993

Abstract. We consider the integrated density of states $N(\lambda)$ of the difference Laplacian $-\Delta$ on the modified Koch graph. We show that $N(\lambda)$ increases only with jumps and a set of jump points of $N(\lambda)$ is the set of eigenvalues of $-\Delta$ with the infinite multiplicity. We establish also that

$$0 < C_1 \leq \lim_{\lambda \to 0} \ \frac{N(\lambda)}{\lambda^{d_s/2}} < \overline{\lim_{\lambda \to 0}} \ \frac{N(\lambda)}{\lambda^{d_s/2}} \leq C_2 < \infty \,,$$

where $d_s = 2 \log 5 / \log(40/3)$ is the spectral dimension of MKG.

1. Introduction

In this paper, we consider the integrated density of states (IDS) $N(\lambda)$, $\lambda \in \mathbb{R}$ of the difference Laplacian $-\Delta$ on the modified Koch graph (MKG). The function N is defined as the normalized limit of the number of eigenvalues less than λ as the size of the finite graph being expanded to infinity. It turns out that N increases only with jumps and the set of jumps points of N is the set of eigenvalues with the infinite multiplicity $D_1 \cup D_2 \cup D_3$, where the set $\mathscr{F} = \overline{D}_2$ is the Julia set of the iteration of the rational function

$$R(z) = 9z(z-1)(z-4/3)(z-5/3)/(z-3/2).$$

Moreover, the set \mathscr{F} is the set of accumulation points for points from the set $D_1 \cup D_3$.

We shall see that the behavior of the function $N(\lambda)$ near zero is $\lambda^{d_s/2}$, $d_s = 2 \log 5 / \log(40/3)$, or more exactly, there exist two positive constants, C_1 , C_2 such that

$$0 < C_1 \leq \lim_{\lambda \to 0} \frac{N(\lambda)}{\lambda^{d_s/2}} < \overline{\lim} \ \frac{N(\lambda)}{\lambda^{d_s/2}} \leq C_2 < \infty$$
(1.0)

i.e., the ratio $N(\lambda)/\lambda^{d_s/2}$ is oscillating and non-convergent as $\lambda \to 0$.