Commun. Math. Phys. 153, 77-115 (1993)

On a Ferromagnetic Spin Chain

Andreas Knauf

Technische Universität, Fachbereich 3 – Mathematik, MA 7–2, Strasse des 17. Juni 135, W-1000 Berlin 2, Germany

Received May 28, 1992; in revised form August 19, 1992

Abstract. The quotient $\zeta(s-1)/\zeta(s)$ of Riemann zeta functions is shown to be the partition function of a ferromagnetic spin chain for inverse temperature s.

Contents

1.	Introduction.	. 77
2.	The Zeta Function and the Spin Chain	. 78
3.	General Framework	. 82
4.	The Grand Canonical Ensemble	. 85
5.	Ferromagnetism	. 90
6.	Upper Bounds for the Interaction Coefficients.	100
7.	Asymptotic Translation Invariance	. 103
8.	Decay Properties of the Potential	104
	Numerical Calculations	
Re	ferences	115

1. Introduction

The aim of this article is to relate ideas and concepts from statistical mechanics to the Riemann zeta function.

The quotient $Z(s) = \zeta(s-1)/\zeta(s)$ is interpreted as the partition function of an infinite ferromagnetic spin chain.

The existence of a connection between number theory and statistical mechanics has been conjectured by Kac (see his Comments in Pólya [4], pp. 424–426), Newman [3], Ruelle [5] and others.

One motivation for that conjecture has been the Lee-Yang circle theorem of statistical mechanics. In its basic form it states that all zeroes of the partition function of a ferromagnetic Ising model in the complex activity plane have unit modulus.