Front Solutions for the Ginzburg-Landau Equation

J.-P. Eckmann and Th. Gallay
Département de Physique Théorique, Université de Genève, CH-1211 Geneva 4, Switzerland

Received June 29, 1992

Abstract

We prove the existence of front solutions for the Ginzburg-Landau equation $$
\partial_{t} u(x, t)=\partial_{x}^{2} u(x, t)+\left(1-|u(x, t)|^{2}\right) u(x, t),
$$ interpolating between two stationary solutions of the form $u(x)=\sqrt{1-q^{2}} e^{i q x}$ with different values of q at $x= \pm \infty$. Such fronts are shown to exist when at least one of the q is in the Eckhaus-unstable domain.

1. Introduction

We consider the Ginzburg-Landau equation (GL)

$$
\begin{equation*}
\partial_{t} u(x, t)=\partial_{x}^{2} u(x, t)+\left(1-|u(x, t)|^{2}\right) u(x, t), \tag{1.1}
\end{equation*}
$$

where u is a complex-valued function of $x \in \mathbf{R}$ and $t \in \mathbf{R}_{+}$. This equation has time-independent periodic solutions of the form

$$
\begin{equation*}
u_{q}(x)=\sqrt{1-q^{2}} e^{i \varphi} e^{i q x} \tag{1.2}
\end{equation*}
$$

where $q \in[-1,1]$ and $\varphi \in \mathbf{R}$. These stationary solutions are known to be unstable for small amplitudes ($q^{2}>1 / 3$) and marginally stable for large amplitudes ($q^{2}<1 / 3$) (Eckhaus stability, cf. [CE]).

Our aim is to show the existence of front solutions of Eq. (1.1) interpolating between two stationary solutions (1.2). By this, we mean solutions of the form $u(x, t)=U(x, x-c t)$, where $U(x, \xi)$ is a complex function which converges to one of the stationary solutions (1.2), say $u_{q_{0}}(x)$, as $\xi \rightarrow-\infty$ and to another one, say $u_{q_{1}}(x)$, as $\xi \rightarrow+\infty$. Such solutions typically look like a fixed envelope moving to the right with constant velocity $c>0$, while leaving a periodic pattern (the function $u_{q_{0}}$) behind and destroying another one ($u_{q_{1}}$) in front, as shown in Fig. 1.

In the case where $u_{q_{1}} \equiv 0\left(q_{1}= \pm 1\right)$, solutions of this form are easily shown to exist, see e.g., [CE, B]. Indeed, inserting in Eq. (1.1) the ansatz $u(x, t)$

