Classification of the Indecomposable Bounded Admissible Modules over the Virasoro Lie Algebra with Weightspaces of Dimension not Exceeding Two

Christiane Martin and Alain Piard

Physique Mathematique, U.A. CNRS 1102, University of Bourgogne, B.P. 138, F-21004 Dijon Cedex, France

Received November 11, 1991; in revised form February 25, 1992

Abstract. In view of [1, 2] any bounded admissible module \mathscr{A} over the Virasoro Lie algebra \mathscr{V} is a finite length extension of irreducible modules with onedimensional weightspaces. To each extension of finite length *n* are associated n + 1 invariants $(a_1, \Lambda_1, \ldots, \Lambda_n)$. We prove that we have $\Lambda_i - \Lambda_j \in \{0, 1, \ldots, 6(n-1)\}$ for all (i, j) with $1 \leq i \leq j \leq n$. In the case n = 2 this result allows us to construct all the indecomposable bounded admissible \mathscr{V} modules, where the dimensions of the weightspaces are less than or equal to two. In particular we obtain all the extensions of two irreducible bounded \mathscr{V} -modules.

I. Introduction

The Virasoro algebra \mathscr{V} is the complex Lie algebra with basis $\{C, x_n, n \in \mathbb{Z}\}$ and commutation relations:

$$[x_{i}, x_{j}] = (j - i)x_{i+j} + \delta_{i,-j} \frac{j^{3} - j}{12} C \quad \forall i, \forall j \in \mathbb{Z},$$

$$[C, x_{i}] = 0.$$

We set also $Q_1 = -x_1x_{-1} + x_0^2 - x_0$. A \mathscr{V} -module is said to be admissible if it satisfies the two conditions:

a) x_0 acts semi-simply.

b) The eigenspaces of x_0 (also called weight-spaces) are finite-dimensional.

Recently, the classification of irreducible admissible \mathscr{V} -modules has been achieved in [1, 2]. Besides the highest or lowest weight \mathscr{V} -modules, it furnishes a second class of \mathscr{V} -modules where the weightspaces are one-dimensional. These latter are the following:

- The \mathscr{V} -modules of Feigin-Fuchs $A(a, \Lambda)$ with $(a, \Lambda) \in \mathbb{C}^2$ and $0 \leq \operatorname{Re} a < 1$ $(a = 0 \Rightarrow \Lambda \neq 0, 1)$, whose action is given on a basis $\{v_n, n \in \mathbb{Z}\}$ by:

$$x_i v_n = (a + n + i\Lambda)v_{n+i} \quad Cv_n = 0 \quad \forall n, \forall i .$$
 (I.1)