The Logarithmic Sobolev Inequality for Discrete Spin Systems on a Lattice ${ }^{\star}$

Daniel W. Stroock ${ }^{1}$ and Boguslaw Zegarlinski ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, 2-272, M.I.T. Cambridge, MA 02139, USA
${ }^{2}$ Fakultät für Mathematik, Ruhr-Universität-Bochum, W-4630 Bochum 1, Postfach 102148, Germany

Received February 15, 1992

Abstract

For finite range lattice gases with a finite spin space, it is shown that the Dobrushin-Shlosman mixing condition is equivalent to the existence of a logarithmic Sobolev inequality for the associated (unique) Gibbs state. In addition, implications of these considerations for the ergodic properties of the corresponding Glauber dynamics are examined.

1. Preliminaries

We begin by introducing the setting in which and some of the notation with which we will be working throughout.
The Lattice. The lattice Γ underlying our model will be the d-dimensional square lattice \mathbb{Z}^{d} for some fixed $d \in \mathbb{Z}^{+}$, and, for $\mathbf{j} \in \Gamma$, we will use the norm $|\mathbf{k}| \equiv \max _{1 \leqq i \leqq d}$ $\left|\mathbf{k}^{i}\right|$. Given $\Lambda \subseteq \Gamma$, we will use $\Lambda\lceil\equiv \Gamma \backslash \Lambda$ to denote the complement of $\Lambda,|\Lambda|$ to denote the cardinality of Λ, and $\mathbf{j}+\Lambda$ to denote the translate $\{\mathbf{j}+\mathbf{k}: \mathbf{k} \in \Lambda\}$ of Λ by $\mathbf{j} \in \Gamma$. Furthermore, for each $R \in \mathbb{R}^{+}$, we take the R-boundary $\partial_{R} \Lambda$ to be the set

$$
\{\mathbf{k} \in \Lambda \mathfrak{l}:|\mathbf{k}-\mathbf{j}| \leqq R \text { for some } \mathbf{j} \in \Lambda\}
$$

We will often use the notation $\Lambda \Subset \Gamma$ to mean that $|\Lambda|<\infty$, and \mathfrak{F} will stand for the set of all non-empty $\Lambda \Subset \Gamma$. A monotone sequence $\mathfrak{F}_{0} \equiv\left\{\Lambda_{n}: n \in \mathbb{N}\right\} \subseteq \mathfrak{F}$ will be called a countable exhaustion if $\Lambda_{n} \nearrow \Gamma$.
The Spin Space. The single spin space for our model will be a finite set Q with the topology of all subsets, corresponding Borel field \mathscr{B}_{Q}, and normalized uniform measure v_{0} on $\left(Q, \mathscr{B}_{Q}\right)$. Given a real-valued function f on Q, we define the differential ∂f of f by

$$
\partial f \equiv f-v_{0} f,
$$

where we have introduced the notation $\mu \varphi$ (to be used throughout) as one of the various expressions for the integral of a μ-integrable function φ with respect to a measure μ.

[^0]
[^0]: * During the period of this research, both authors were partially supported by NSF grant DMS 8913328

