The Extended Bethe Ansatz for Infinite $S=1 / 2$ Quantum Spin Chains with Non-Nearest-Neighbor Interaction

V. I. Inozemtsev
International Centre for Theoretical Physics, I-34100 Trieste, Italy and Laboratory of Theor. Phys., JINR, Head Post Office P.O. Box 79, Moscow (Dubna), Russia^

Received September 25, 1991

Abstract

It is shown that the description of the states of infinite $S=1 / 2$ interacting spin systems with the Hamiltonian $H_{s}=-\frac{J}{2} \sum_{j \neq l, j, l \in \mathbf{Z}} a^{2} \sinh ^{-2} a(j-l) \frac{\left(\sigma_{j} \sigma_{l}-1\right)}{2}$ can be performed by studying the hyperbolic Calogero-Sutherland eigenvalue problem. The construction of multimagnon wave functions in each N-magnon sector is based on solutions of the set of linear algebraic equations which determine also the structure of zonal spherical functions on symmetric spaces $X_{N}^{-}=S L(N, \mathbf{H}) / \operatorname{Sp}(N)$ of negative curvature. The usual Bethe Ansatz for the XXX Heisenberg model corresponds to asymptotic forms of these wave functions at small values of a^{-1} or large distances between spins turned over the ferromagnetic ground state.

1. Introduction

Starting with the paper of Bethe [1], the investigation of one-dimensional exactly solvable models of interacting objects (spins, classical or quantum particles in the schemes of first and second quantization) has given a number of results both of physical and mathematical significance. One of the highlights in this branch of mathematical physics is the Yang-Baxter equation [2,3] which serves as a source of continuous development in the study of various aspects of group theory and low-dimensional statistical mechanics. Most of the well-known statistical models both in one- and two-dimensional cases have solutions in the form of the Bethe Ansatz in its classical [1, 2, 4] or algebraic [5] versions with some more or less sophisticated modifications. On the other hand, there is a family of systems which were proved to be completely integrable [6-11], but the solutions were not included into the Bethe Ansatz [9-10, 16] or still remained unknown.

[^0]
[^0]: * Permanent address

