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Abstract. Let k: Y —• X be an embedding of compact complex manifolds. Bismut

and Lebeau have calculated the Quillen norm of the canonical isomorphism identifying

the determinant of the cohomology of a holomorphic vector bundle over Y and the

determinant of the cohomology of a resolution by a complex of holomorphic vector

bundles over X. The purpose of this paper is to show that the formula of Bismut-

Lebeau can be viewed as an equivariant intersection formula over the loop space of

the considered manifolds, in the presence of an infinite dimensional excess normal

bundle. This excess normal bundle is responsible for the appearance of the additive

genus R of Gillet and Soule in the formula of Bismut and Lebeau.
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