Hamiltonian Formalism of Whitham-Type Hierarchies and Topological Landau-Ginsburg Models

B. A. Dubrovin*

Department Mechanics and Mathematics, Moscow State University, SU-119899 Moscow, USSR

Received August 15, 1991

Abstract. We show that the bi-hamiltonian structure of the averaged Gelfand-Dikii hierarchy is involved in the Landau-Ginsburg topological models (for A_n -Series): the Casimirs for the first P.B. give the correct coupling parameters for the perturbed topological minimal model; the correspondence {coupling parameters} \rightarrow {primary fields} is determined by the second P.B. The partition function (at the tree level) and the chiral algebra for LG models are calculated for any genus g.

Introduction

We start with explanation of the term "Whitham-type hierarchy" and with brief summary of the Landau-Ginsburg potential formalism in topological minimal models.

Whitham-type hierarchy. Let

$$\partial_{t_a} \psi = F_a(\psi, \psi_x, \dots), \qquad a = 1, 2, \dots \tag{0.1}$$

be a KdV-type hierarchy of pairwise commuting evolutionary systems. Let us fix a N-dimensional family of invariant m-tori. In other words we fix a family of exact solutions of (0.1) of the form

$$\psi = \Psi(t_1 \kappa^{(1)} + t_2 \kappa^{(2)} + \dots + \varphi^0; u^1, \dots, u^N)$$
 (0.2)

(let $F_1 = \psi_x$ so $t_1 \equiv x$). Here $\Psi = \Psi(\varphi_1, \ldots, \varphi_m; u^1, \ldots, u^N)$ is a 2π -periodic in $\varphi_1, \ldots, \varphi_m$ function depending on the parameters $u = (u^1, \ldots, u^N)$; $\kappa^{(a)} = (\kappa_1^{(a)}(u), \ldots, \kappa_m^{(a)}(u))$; $\varphi^0 = (\varphi_1^0, \ldots, \varphi_m^0)$ is an arbitrary phase shift. The parameters $u = (u^1, \ldots, u^N)$ belong to a N-dimensional manifold M. In the nonlinear WKB-approximation [1] ("Whitham averaging method") the hierarchy (0.2)

^{*} Address for 1991/1992 acad. year: Universitá degli Studi di Napoli, Dipartimento di Scienze Fisiche – Mostra d'Oltremare, Pad. 19, I-80125 Napoli, Italy. Fax (39) 81-7253449