Commun. Math. Phys. 144, 17-40 (1992)

Conformal Blocks of Minimal Models on a Riemann Surface

G. Felder¹ and R. Silvotti^{2,*}

¹ Institut für theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland ² Mathematical Sciences Research Institute, Berkeley, CA 94720, USA

Received March 5, 1991

Abstract. We give explicit integral representations for conformal blocks of minimal models on arbitrary compact Riemann surfaces.

1. Introduction

Rational conformal field theory on the Riemann sphere S can be formulated in terms of a pair $\mathscr{L} \oplus \mathscr{L}$ of identical Virasoro algebras \mathscr{L} with assigned rational central charge c. If L(h, c) denotes the irreducible highest weight \mathscr{L} -module of highest weight h, the Hilbert space of the theory decomposes as $\bigoplus_{h,h'} L(h, c) \otimes L(h', c)$,

with h and h' ranging in some finite set of rational values. Correlation functions of local fields at point P_1, \ldots, P_n on S admit an analogous decomposition into the so-called left (respectively right) conformal blocks, which depend holomorphically (respectively antiholomorphically) on the local coordinates $z(P_i)$ defined about the P_i .

Under certain consistency requirements, the theory can be generalized to Riemann surfaces Σ of positive genus. The main argument for this lies in a formalization of the surgery operations ("sewing") through which Σ can be obtained from a set of three-punctured spheres. General formulations of conformal field theory on Riemann surfaces have been outlined by Segal and by Gawedzki. They can be roughly summarized as follows: The holomorphic part of a conformal field theory is specified by assignments $\Sigma \mapsto B(\Sigma)$ of objects B to Riemann surfaces. If Σ has m + n punctures at points P_i , the $B(\Sigma)$: $\bigotimes_{\substack{1 \le i \le m}} L(h_i, c) \rightarrow \bigotimes_{\substack{m+1 \le i \le m+n}} L(h_i, c)$

are trace class operators depending holomorphically on $z(P_i)$ and having specified properties under conformal diffeomorphisms. Moreover, the assignment B from

^{*} On leave from Columbia University, Department of Mathematics, New York, NY 10027, USA Supported by NSF under grant DMS-8505550