

Measure Solutions of the Steady Boltzmann Equation in a Slab

Leif Arkeryd¹, Carlo Cercignani² and Reinhard Illner³

¹ Department of Mathematics, Chalmers Institute of Technology, Goeteborg, Sweden

² Dipartimento di Matematica, Politecnico di Milano, I-20133 Milano, Italy

³ Department of Mathematics, University of Victoria, P.O. Box 3045, Victoria, B.C. V8W 3P4, Canada

Received October 25, 1990; in revised form March 29, 1991

Abstract. It is shown that the steady Boltzmann equation in a slab [0, a] has solutions $x \to \mu_x$ such that the ingoing boundary measures $\mu_{0|\{\xi>0\}}$ and $\mu_{a|\{\xi<0\}}$ can be prescribed a priori. The collision kernel is truncated such that particles with small x-component of the velocity have a reduced collision rate.

1. Introduction

Throughout this paper, $v = (\xi, \eta, \zeta) \in \mathbb{R}^3$ will denote a velocity vector with x-, y- and z-components ξ, η and ζ respectively. x is the (one-dimensional) position in the interval [0, a]. This interval is also referred to as a "slab."

For two velocities $v, w \in \mathbb{R}^3$ and a collision parameter $n \in S^2$, we define the collision transformation

11

by

$$J: (v, n, w) \to (v, -n, w)$$

$$v' = v - n(n, v - w),$$

$$w' = w + n(n, v - w).$$
(1.1)

 \sim

Here, (n, v - w) denotes the Euclidean inner product in \mathbb{R}^3 . J is an involution $(J^2 = id)$ and preserves momentum and energy. It is also well-known (and easily checked) that ||v' - w'|| = ||v - w|| and |(n, v - w)| = |(n, v' - w')|, so the collision kernel B(n, v - w), which in effect only depends on ||v - w|| and |(n, v - w)|, is invariant under the action of J.

We are concerned with the steady Boltzmann equation in the slab $0 \le x \le a$, for f = f(x, v),

$$\xi \cdot \frac{d}{dx}f = C(f, f) \tag{1.2}$$